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Abstract

We propose a method that learns a discriminative yet semantic space for object
categorization, where we also embed auxiliary semantic entities such as supercat-
egories and attributes. Contrary to prior work which only utilized them as side
information, we explicitly embed the semantic entities into the same space where
we embed categories, which enables us to represent a category as their linear com-
bination. By exploiting such a unified model for semantics, we enforce each cate-
gory to be represented by a supercategory + sparse combination of attributes, with
an additional exclusive regularization to learn discriminative composition.

1 Introduction
Semantic approaches have gained a lot of attention recently for object categorization, as object cat-
egorization problems became more focused on large-scale and fine-grained recognition tasks and
datasets. Attributes [1, 2, 3, 4] and semantic taxonomies [5, 6, 7, 8] are two of the popular seman-
tic sources which impose certain relations between the category models. While many techniques
have been introduced to utilize each of the individual semantic sources for object categorization, no
unified model has been proposed to relate them.

We propose a unified semantic model where we can learn to place categories, supercategories, and
attributes as points (or vectors) in a hypothetical common semantic space. Further, we propose a
discriminative learning framework based on dictionary learning and large margin embedding, to
learn each of these semantic entities to be well separated and pseudo-orthogonal, such that we can
use them to improve visual recognition tasks such as category or attribute recognition.

However, having semantic entities embedded into a common space is not enough to utilize the vast
number of relations that exist among them. Thus, we impose a graph-based regularization between
the semantic embeddings, such that each semantic embedding is regularized by sparse combination
of auxiliary semantic embeddings.

The observation we make to draw the relation between the categories and attributes, is that a category
can be represented as the sum of its super category + the category-specific modifier, which in many
cases can be represented by a combination of attributes. Further, we want the representation to be
compact. Instead of describing a dalmatian as a domestic animal with a lean body, four legs, a
long tail, and spots, it is more efficient to say it is a spotted dog (Figure 1). It is also more exact
since the higher-level category dog contains all general properties of different dog breeds, including
indescribable dog-specific properties, such as the shape of the head, and its posture. This exemplifies
how a human would describe an object, to efficiently communicate and understand the concept.

This additional requirement imposed on the discriminative learning model would guide the learning
such that we obtain not just the optimal model for class discrimination, but to learn a semantically
plausible model which has a potential to be more robust and human-interpretable; we call this model
Unified Semantic Embedding (USE).
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Figure 1: Concept: We regularize each category to
be represented by its supercategory + a sparse com-
bination of attributes, where the combinations are
learned. The resulting embedding model improves the
generalization, and is also able to compactly represent
a novel category. For example, our model can describe
a tiger as a striped feline. Such decomposition can
hold for categories at any level. For example, supercat-
egory feline can be described as a stalking carnivore.

2 Learning a unified semantic embedding space

Suppose we have d-dimensional image descriptors and m-dimensional label vectors, including cat-
egory labels, at different semantic granularities, and attributes. Our goal is to embed both images
and labels into a single unified semantic space. To formally state the problem, given a training set
D that has N labeled examples, i.e. D = {xi, yi}Ni=1, where xi ∈ Rd denotes image descriptors
and yi ∈ {1, . . . ,m} are their labels associated with m unique concepts, we want to embed each xi

as zi, and each label yi as uyi
in the de-dimensional space, such that the similarity between zi and

uyi
, S(zi,uyi

), is maximized. Assuming linear embedding with matrixW , zi =Wxi.

To ensure that the projected instances have higher similarity to its own category embedding than to
others, we add discriminate constraints, which are large-margin constraints on distance: ‖Wxi −
uyi
‖22 + 1 ≤ ‖Wxi − uc‖22 + ξic, yi 6= c. This translates to the following discriminative loss:

LC(W ,U ,xi, yi) =
∑
c

[1 + ‖Wxi − uyi
‖22 − ‖Wxi − uc‖22]+,∀c 6= yi, (1)

where U is the columwise concatenation label embedding vectors, such that uj denotes jth column
of U . After replacing the generative loss in the ridge regression formula with the discriminative
loss, we get the following discriminative learning problem:

min
W ,U

N∑
i

LC(W ,U ,xi, yi) + λ‖W ‖2F + λ‖U‖2F , yi ∈ {1, . . . ,m}, (2)

where λ regularizes W and U from going to infinity. This is one of the most common objectives
used for learning discriminative category embeddings for multi-class classification [9, 7], while
ranking loss-based [10] models have been also explored for LC .

Supercategories. While our objective is to better categorize entry level categories, categories in
general can appear in different semantic granularities. For example, a zebra could be both an equus,
and an odd-toed ungulate. To learn the embeddings for the supercategories, we map each data
instance to be closer to its correct supercategory embedding than to its siblings: ‖Wxi−us‖22+1 ≤
‖Wxi−uc‖22+ ξsc,∀s ∈ Pyi

and c ∈ Ss where Pyi
denotes the set of superclasses at all levels for

class s, and Ss is the set of its siblings. The constraints can be translated into the following loss:

LS(W ,U ,xi, yi) =
∑

s∈Pyi

∑
c∈Ss

[1 + ‖Wxi − us‖22 − ‖Wxi − uc‖22]+. (3)

Attributes. Attributes can be considered as a normalized basis vectors for the semantic space,
whose combination represents a category. Basically, we want to maximize the correlation between
the projected instance that possess the attribute, and its correct attribute embedding, as follows:

LA(W ,U ,xi, yi) =
∑

a∈Ayi

[σ − (Wxi)
Tyai ua]+, ‖ua‖2 ≤ 1, yai ∈ {0, 1}, (4)

where Ac is the set of all attributes for class c, σ is the margin (we simply use a fixed value of
σ = 1), yai is the label indicating presence/absence of each attribute a for the ith training instance,
and ua is the embedding vector for attribute a.

Semantic regularization. The previous multi-task formulation enables to implicitly associate the
semantic entities, with the shared data embedding W . However, we want to further explicitly im-
pose structural regularization on the semantic embeddings U , based on the intuition that an object
class can be represented as its parent level class + a sparse combination of attribute as follows:
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R(U ,B) =

C∑
c

‖uc − up −UAβc‖22 + γ2‖βc + βo‖22;

c ∈ Cp, o ∈ Pc ∪ Sc, 0 � βc � γ1,∀c, p ∈ {1, . . . ,C+ S},
(5)

where UA is the aggregation of all attribute embeddings {ua}, Cp is the set of children classes for
class p, γ1 is the sparsity parameter, and C is the number of categories. B is the matrix whose jth
column vector βj is the reconstruction weight for class j, Sc is the set of all sibling classes for class
c, and γ2 is the parameters to enforce exclusivity. We require β to be non-negative, since it makes
more sense to describe an object with attributes that it has, rather than attributes it does not have.

The exclusive regularization term is used to prevent the semantic reconstruction βc for class c from
fitting to the same attributes fitted by its parents and siblings. Such regularization will enforce the
categories to be ‘semantically’ discriminated as well. With the sparsity regularization enforced by
γ1, the simple sum of the two weights will prevent the two (super)categories from having high
weight for a single attribute, which will let each category embedding to fit to exclusive attributes.

Unified semantic embeddings with semantic regularization. After augmenting the categoriza-
tion objective in Eq. 2 with the superclass and attributes loss and the sparse-coding based regular-
ization in Eq. 5, we obtain the following multitask learning formulation:

min
W ,U,B

N∑
i=1

LC(W ,U ,xi, yi) + µ1 (LS(W ,U ,xi, yi) + LA(W ,U ,xi, yi)) + µ2R(U ,B);

‖wj‖22 ≤ λ, ‖uk‖22 ≤ λ, 0 � βc � γ1∀j ∈ {1, . . . , d}, ∀k ∈ {1, . . . ,m}, ∀c, p ∈ {1, . . . ,C+ S},

(6)

where S is the number of supercategories, wj is W ’s jth column, and µ1 and µ2 are parameters to
balance between the main and auxiliary tasks, and discriminative and generative objective.

Eq. 6 can also be used for knowledge transfer when learning a model for a novel set of categories,
by replacing UA inR(U ,B) with US , learned on class set S to transfer the knowledge from.

Numerical optimization. Eq. 6 is not jointly convex, and has both discriminative and generative
terms. The problem is similar to the problem in [11], and can be optimized using a similar alternating
optimization, while alternating between the following two convex sub-problems: 1) Optimization of
the data embeddingW and parametersB, and 2) Optimization of the category embedding U .

3 Results

We validate our method for multiclass categorization performance and knowledge transfer on the
Animals with Attributes dataset [1], which consists of 30, 475 images on 50 animal classes, with 85
class-level attributes 1. We use the Wordnet hierarchy to generate supercategories. Since there is no
fixed training/test split, we use {30,30,30} random split for training/validation/test. For the features,
we use the provided 4096-D DeCAF features obtained from a deep convolutional neural network.

We compare USE against multiple existing embedding-based categorization approaches, that either
do not use any semantic information, or use semantic information but do not explicitly embed se-
mantic entities. For non-semantic baselines, we use Ridge Regression, a linear regression with `-2
norm, and LME, a base large-margin embedding (Eq. 2) solved using alternating optimization. For
implicit semantic baselines, we consider ALE, HLE, and AHLE, which are our implementation
of Akata et al. [4]. The method inputs the semantic information by representing each class with
structured labels that indicate the class’ association with superclasses and attributes. We implement
variants that use attributes (ALE), leaf level + superclass labels (HLE), and both (AHLE) labels.

We implement multiple variants of our model to analyze the impact of each semantic entity and
the proposed regularization. 1) LME-MTL-S: The multitask semantic embedding model learned
with supercategories. 2) LME-MTL-A: The multitask embedding model learned with attributes. 3)
USE-No Reg.: The unified semantic embedding model learned using both attributes and supercat-
egories, without semantic regularization. 4) USE-Reg: USE with the sparse coding regularization.
We find the optimal parameters for the USE model by cross-validation on the validation set.

1Attributes are defined on color (black, orange), texture (stripes, spots), parts (longneck, hooves), and other
high-level behavioral properties (slow, hibernate, domestic) of the animals.
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Flat hit @ k (%) Hierarchical precision @ k (%)
Method 1 2 5 2 5

No
semantics

Ridge Regression 38.39 ± 1.48 48.61 ± 1.29 62.12 ± 1.20 38.51 ± 0.61 41.73 ± 0.54
LME 44.76 ± 1.77 58.08 ± 2.05 75.11 ± 1.48 44.84 ± 0.98 49.87 ± 0.39

Implicit
semantics

ALE [4] 36.40 ± 1.03 50.43 ± 1.92 70.25 ± 1.97 42.52 ± 1.17 52.46 ± 0.37
HLE [4] 33.56 ± 1.64 45.93 ± 2.56 64.66 ± 1.77 46.11 ± 2.65 56.79 ± 2.05

AHLE [4] 38.01 ± 1.69 52.07 ± 1.19 71.53 ± 1.41 44.43 ± 0.66 54.39 ± 0.55
Explicit
semantics

LME-MTL-S 45.03 ± 1.32 57.73 ± 1.75 74.43 ± 1.26 46.05 ± 0.89 51.08 ± 0.36
LME-MTL-A 45.55 ± 1.71 58.60 ± 1.76 74.67 ± 0.93 44.23 ± 0.95 48.52 ± 0.29

USE USE-No Reg. 45.93 ± 1.76 59.37 ± 1.32 74.97 ± 1.15 47.13 ± 0.62 51.04 ± 0.46
USE-Reg. 46.42 ± 1.33 59.54 ± 0.73 76.62 ± 1.45 47.39 ± 0.82 53.35 ± 0.30

Table 1: Multiclass classification performance on AWA-DeCAF dataset (4096-D DeCAF features).

Multiclass categorization. We first evaluate the USE framework for categorization performance.
We report the average classification performance and standard error over 5 random training/test
splits in Table 1, using both flat hit@k, which is the accuracy at the top-k prediction made, and
hierarchical precision@k from [12], which is a precision the given label is correct at k, at all levels.

The implicit semantic baselines, ALE-variants, underperformed even the ridge regression baseline
with regard to the top-1 classification accuracy 2, while they improve upon the top-2 and hierarchical
precision. This shows that hard-encoding structures in the label space do not necessarily improve
the discrimination performance, while it helps to learn a more semantic space.

Explicit embedding of semantic entities using our method improved both the top-1 accuracy and the
hierarchical precision, with USE variants achieving the best performance in both. USE-Reg. made
substantial improvements on flat hit and hierarchical precision @ 5, which shows the proposed
regularization’s effectiveness in learning a semantic space that also discriminates well.

Category Ground-truth attributes Supercategory + learned attributes

Otter

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, . . .

A musteline mammal that is quadrapedal, flippers, furry,
ocean

Skunk

An animal that is smelly, black, stripes, white, tail, furry,
ground, quadrapedal, new world, walks, . . . A musteline mammal that has stripes

Moose

An animal that has horns, brown, big, quadrapedal, new
world, vegetation, grazer, hooves, strong, ground,. . . A deer that is arctic, stripes, black

Equine N/A An odd-toed ungulate, that is lean and active
Primate N/A An animal, that has hands and bipedal

Table 2: Semantic description generated using ground truth attributes labels and learned semantic decomposi-
tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

Qualitative analysis. Besides learning a space that is both discriminative and generalizes well, our
method’s main advantage is its ability to generate compact, semantic description of each category
it has learned. This is a great caveat, since in most models, including the state-of-the art deep
convolutional networks, humans cannot understand what has been learned; by generating human-
understandable explanation, our model can communicate with the human, allowing understanding
of rationale behind the categorization decision, and to possibly provide feedback for correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by ground-truth attributes
in Table 2. The results show that our method generates compact description of each category, focus-
ing on its discriminative attributes. For example, our method selects flippers for otter, and stripes
for skunk, instead of common nondescriminative attributes such as tail. Further, our method selects
attributes for each supercategory, while there is no provided attribute label for supercategories.

One-shot/Few-shot learning. Our method is expected to be especially useful for few-shot learn-
ing, by generating a richer description than existing methods that approximate the new input cate-
gory using only trained categories, or attributes. For this experiment, we divide the 50 categories
into predefined 40/10 training/test split. USE-Reg achieves the most improvement, improving two-
shot result on AWA-DeCafe from 38.93% to 49.87%. Most learned reconstruction look reasonable,
and fit to discriminative traits that help to discriminate between the test classes.

2We did extensive parameter search for the ALE variants.
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