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Abstract

We propose a method that learns a discriminative yet semantic space for object
categorization, where we also embed auxiliary semantic entities such as supercat-
egories and attributes. Contrary to prior work, which only utilized them as side in-
formation, we explicitly embed these semantic entities into the same space where
we embed categories, which enables us to represent a category as their linear com-
bination. By exploiting such a unified model for semantics, we enforce each cate-
gory to be generated as a supercategory + a sparse combination of attributes, with
an additional exclusive regularization to learn discriminative composition. The
proposed reconstructive regularization guides the discriminative learning process
to learn a model with better generalization. This model also generates compact se-
mantic description of each category, which enhances interoperability and enables
humans to analyze what has been learned.

1 Introduction

Object categorization is a challenging problem that requires drawing boundaries between groups of
objects in a seemingly continuous space. Semantic approaches have gained a lot of attention recently
as object categorization became more focused on large-scale and fine-grained recognition tasks and
datasets. Attributes [1, 2, 3, 4] and semantic taxonomies [5, 6, 7, 8] are two popular semantic sources
which impose certain relations between the category models, including a more recently introduced
analogies [9] that induce even higher-order relations between them. While many techniques have
been introduced to utilize each of the individual semantic sources for object categorization, no uni-
fied model has been proposed to relate them.

We propose a unified semantic model where we can learn to place categories, supercategories, and
attributes as points (or vectors) in a hypothetical common semantic space, and taxonomies provide
specific topological relationships between these semantic entities. Further, we propose a discrimi-
native learning framework, based on dictionary learning and large margin embedding, to learn each
of these semantic entities to be well separated and pseudo-orthogonal, such that we can use them to
improve visual recognition tasks such as category or attribute recognition.

However, having semantic entities embedded into a common space is not enough to utilize the
vast number of relations that exist between the semantic entities. Thus, we impose a graph-based
regularization between the semantic embeddings, such that each semantic embedding is regularized
by sparse combination of auxiliary semantic embeddings. This additional requirement imposed on
the discriminative learning model would guide the learning such that we obtain not just the optimal
model for class discrimination, but to learn a semantically plausible model which has a potential to
be more robust and human-interpretable; we call this model Unified Semantic Embedding (USE).
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Figure 1: Concept: We regularize each category
to be represented by its supercategory + a sparse
combination of attributes, where the regularization
parameters are learned. The resulting embedding
model improves the generalization ability by the
specific relations between the semantic entities, and
also is able to compactly represent a novel category
in this manner. For example, given a novel category
tiger, our model can describe it as a striped feline.

The observation we make to draw the relation between the categories and attributes, is that a category
can be represented as the sum of its supercategory + the category-specific modifier, which in many
cases can be represented by a combination of attributes. Further, we want the representation to be
compact. Instead of describing a dalmatian as a domestic animal with a lean body, four legs, a
long tail, and spots, it is more efficient to say it is a spotted dog (Figure 1). It is also more exact
since the higher-level category dog contains all general properties of different dog breeds, including
indescribable dog-specific properties, such as the shape of the head, and its posture.

This exemplifies how a human would describe an object, to efficiently communicate and understand
the concept. Such decomposition of a category into attributes+supercategory can hold for categories
at any level. For example, supercategory feline can be described as a stalking carnivore.

With the addition of this new generative objective, our goal is to learn a discriminative model that
can be compactly represented as a combination of semantic entities, which helps learn a model that is
semantically more reasonable. We want to balance between these two discriminative and generative
objectives when learning a model for each object category. For object categories that have scarce
training examples, we can put more weight on the generative part of the model.

Contributions: Our contributions are threefold: (1) We show a multitask learning formulation for
object categorization that learns a unified semantic space for supercategories and attributes, while
drawing relations between them. (2) We propose a novel sparse-coding based regularization that
enforces the object category representation to be reconstructed as the sum of a supercategory and a
sparse combination of attributes. (3) We show from the experiments that the generative learning with
the sparse-coding based regularization helps improve object categorization performance, especially
in the one or few-shot learning case, by generating semantically plausible predictions.

2 Related Work

Semantic methods for object recognition. For many years, vision researchers have sought to
exploit external semantic knowledge about the object to incorporate semantics into learning of the
model. Taxonomies, or class hierarchies were the first to be explored by vision researchers [5, 6], and
were mostly used to efficiently rule out irrelevant category hypotheses leveraging class hierarchical
structure [8, 10]. Attributes are visual or semantic properties of an object that are common across
multiple categories, mostly regarded as describable mid-level representations. They have been used
to directly infer categories [1, 2], or as additional supervision to aid the main categorization problem
in the multitask learning framework [3]. While many methods have been proposed to leverage either
of these two popular types of semantic knowledge, little work has been done to relate the two, which
our paper aims to address.

Discriminative embedding for object categorization. Since the conventional kernel-based mul-
ticlass SVM does not scale due to its memory and computational requirements for today’s large-scale
classification tasks, embedding-based methods have gained recent popularity. Embedding-based
methods perform classification on a low dimensional shared space optimized for class discrimina-
tion. Most methods learn two linear projections, for data instances and class labels, to a common
lower-dimensional space optimized by ranking loss. Bengio et al. [10] solves the problem using
stochastic gradient, and also provides a way to learn a tree structure which enables one to efficiently
predict the class label at the test time. Mensink et al. [11] eliminated the need of class embedding by
replacing them with the class mean, which enabled generalization to new classes at near zero cost.

There are also efforts in incorporating semantic information into the learned embedding space.
Weinberger et al. [7] used the taxonomies to preserve the inter-class similarities in the learned space,
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in terms of distance. Akata et al. [4] used attributes and taxonomy information as labels, replacing
the conventional unit-vector based class representation with more structured labels to improve on
zero-shot performance. One most recent work in this direction is DEVISE [12], which learns em-
beddings that maximize the ranking loss, as an additional layer on top of the deep network for both
images and labels. However, these models impose structure only on the output space, and structure
on the learned space is not explicitly enforced, which is our goal.

Recently, Hwang et al. [9] introduced one such model, which regularizes the category quadruplets,
that form an analogy, to form a parallelogram. Our goal is similar, but we explore a more general
compositional relationship, which we learn without any manual supervision.

Multitask learning. Our work can be viewed as a multitask learning method, since we relate
each model for different semantic entities by learning both the joint semantic space and enforcing
geometric constraints between them. Perhaps the most similar work is [13], where the parameter
of each model is regularized while fixing the parameter for its parent-level models. We use similar
strategy but instead of enforcing sharing between the models, we simply learn each model to be
close to its approximation obtained using higher-level (more abstract) concepts.

Sparse coding. Our method to approximate each category embedding as a sum of its direct super-
category plus a sparse combination of attributes, is similar to the objective of sparse coding. One
work that is specifically relevant to ours is Mairal et al. [14], where the learning objective is to re-
duce both the classification and reconstruction error, given class labels. In our model, however, the
dictionary atoms are also discriminatively learned with supervision, and are assembled to be a se-
mantically meaningful combination of a supercategory + attributes, while [14] learns the dictionary
atoms in an unsupervised way.

3 Approach

We now explain our unified semantic embedding model, which learns a discriminative common
low-dimensional space to embed both the images and semantic concepts including object categories,
while enforcing relationships between them using semantic reconstruction.

Suppose that we have a d-dimensional image descriptor andm-dimensional vector describing labels
associated with the instances, including category labels at different semantic granularities and at-
tributes. Our goal then is to embed both images and the labels onto a single unified semantic space,
where the images are associated with their corresponding semantic labels.

To formally state the problem, given a training set D that has N labeled examples, i.e. D =
{xi, yi}Ni=1, where xi ∈ Rd denotes image descriptors and yi ∈ {1, . . . ,m} are their labels as-
sociated with m unique concepts, we want to embed each xi as zi, and each label yi as uyi in the
de-dimensional space, such that the similarity between zi and uyi , S(zi,uyi) is maximized.

One way to solve the above problem is to use regression, using S(zi,uyi) = −‖zi−uyi‖22. That is,
we estimate the data embedding zi as zi =Wxi, and minimize their distances to the correct label
embeddings uyi ∈ Rm where the dimension for yi is set to 1 and every other dimension is set to 0:

min
W

m∑
c=1

N∑
i=1

‖Wxi − uyi‖22 + λ‖W ‖2F . (1)

The above ridge regression will project each instance close to its correct embedding. However, it
does not guarantee that the resulting embeddings are well separated. Therefore, most embedding
methods for categorization add in discriminative constraints which ensure that the projected in-
stances have higher similarity to their own category embedding than to others. One way to enforce
this is to use large-margin constraints on distance: ‖Wxi−uyi‖22+1 ≤ ‖Wxi−uc‖22+ξic, yi 6= c
which can be translated into to the following discriminative loss:

LC(W ,U ,xi, yi) =
∑
c

[1 + ‖Wxi − uyi‖22 − ‖Wxi − uc‖22]+,∀c 6= yi, (2)

where U is the columwise concatenation of each label embedding vector, such that uj denotes jth
column of U . After replacing the generative loss in the ridge regression formula with the discrimi-
native loss, we get the following discriminative learning problem:

min
W ,U

N∑
i

LC(W ,U ,xi, yi) + λ‖W ‖2F + λ‖U‖2F , yi ∈ {1, . . . ,m}, (3)
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where λ regularizes W and U from shooting to infinity. This is one of the most common objective
used for learning discriminative category embeddings for multi-class classification [10, 7], while
ranking loss-based [15] models have been also explored for LC . Bilinear model on a single variable
W has been also used in Akata et al. [4], which uses structured labels (attributes) as uyi .

3.1 Embedding auxiliary semantic entities.

Now we describe how we embed the supercategories and attributes onto the learned shared space.

Supercategories. While our objective is to better categorize entry level categories, categories in
general can appear at different semantic granularities. For example, a zebra could be both an equus,
and an odd-toed ungulate. To learn the embeddings for the supercategories, we map each data
instance to be closer to its correct supercategory embedding than to its siblings: ‖Wxi−us‖22+1 ≤
‖Wxi − uc‖22 + ξsc,∀s ∈ Pyi and c ∈ Ss where Pyi denotes the set of superclasses at all levels
for class yi, and Ss is the set of its siblings. The constraints can be translated into the following loss
term:

LS(W ,U ,xi, yi) =
∑
s∈Pyi

∑
c∈Ss

[1 + ‖Wxi − us‖22 − ‖Wxi − uc‖22]+. (4)

Attributes. Attributes can be considered normalized basis vectors for the semantic space, whose
combination represents a category. Basically, we want to maximize the correlation between the
projected instance that possess the attribute, and its correct attribute embedding, as follows:

LA(W ,U ,xi, yi) =
∑
a∈Ayi

[σ − (Wxi)
Tyai ua]+, ‖ua‖2 ≤ 1, yai ∈ {0, 1} (5)

where Ac is the set of all attributes for class c, σ is the margin (can be empirically determined; we
simply use a fixed value of σ = 1), yai is the label indicating presence/absence of each attribute a
for the ith training instance, and ua is its embedding vector for attribute a.

3.2 Relationship between the categories, supercategories, and attributes

Simply summing up all previously defined loss functions while adding {us} and {ua} as addi-
tional columns of U will result in a multi-task formulation that implicitly associate the semantic
entities, through the shared data embedding W . However, we want to further utilize the relation-
ships between the semantic entities, to explicitly impose structural regularization on the semantic
embeddings U . One simple and intuitive relation is that an object class can be represented as the
combination of its parent level category plus a sparse combination of attributes, which translates into
the following constraint:

uc = up +U
Aβc, c ∈ Cp, ‖βc‖0 � γ1,βc � 0,∀c, p ∈ {1, . . . ,C+ S}, (6)

where UA is the aggregation of all attribute embeddings {ua}, Cp is the set of children classes for
class p, γ1 is the sparsity parameter, C is the number of leaf level categories, and S is the number
of supercategories. We require β to be non-negative, since it makes more sense and more efficient
to describe an object with attributes that it might have, rather than describing it by attributes that it
might not have.

We rewrite Eq. 6 into a regularization term as follows, replacing the `0-norm constraints with `1-
norm regularizations for tractable optimization:

R(U ,B) =

C∑
c

‖uc − up −UAβc‖22 + γ2‖βc + βo‖22,

c ∈ Cp, o ∈ Pc ∪ Sc, 0 � βc � γ1,∀c, p ∈ {1, . . . ,C+ S},
(7)

whereB is the matrix whose jth column vector βj is the reconstruction weight for class j, Sc is the
set of all sibling classes for class c, and γ2 is the parameters to enforce exclusivity.

The exclusive regularization term is used to prevent the semantic reconstruction βc for class c from
fitting to the same attributes fitted by its parents and siblings. This is because attributes common
across parent and child, and between siblings, are less discriminative. This regularization is es-
pecially useful for discrimination between siblings, which belong to the same superclass and only
differ by the category-specific modifier. By generating unique semantic decomposition for each
class, we can better discriminate between any two categories using a semantic combination of dis-
criminatively learned auxiliary entities.
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With the sparsity regularization enforced by γ1, the simple sum of the two weights will prevent the
two (super)categories from having high weight for a single attribute, which will let each category
embedding to fit to exclusive attribute set. This, in fact, is the exclusive lasso regularizer introduced
in [16], except for the nonnegativity constraint on βc, which makes the problem easier to solve.

3.3 Unified semantic embeddings for object categorization

After augmenting the categorization objective in Eq. 3 with the superclass and attributes loss and the
sparse-coding based regularization in Eq. 6, we obtain the following multitask learning formulation
that jointly learns all the semantic entities along with the sparse-coding based regularization:

min
W ,U,B

N∑
i=1

LC(W ,U ,xi, yi) + µ1 (LS(W ,U ,xi, yi) + LA(W ,U ,xi, yi)) + µ2R(U ,B);

‖wj‖22 ≤ λ, ‖uk‖22 ≤ λ, 0 � βc � γ1, ∀j ∈ {1, . . . , d}, ∀k ∈ {1, . . . ,m}, ∀c, p ∈ {1, . . . ,C+ S},

(8)

where wj is W ’s jth column, and µ1 and µ2 are parameters to balance between the main and
auxiliary tasks, and discriminative and generative objective.

Eq. 8 could be also used for knowledge transfer when learning a model for a novel set of categories,
by replacing UA inR(U ,B) with US , learned on class set S to transfer the knowledge from.

3.4 Numerical optimization

Eq. 8 is not jointly convex in all variables, and has both discriminative and generative terms. This
problem is similar to the problem in [14], where the objective is to learn the dictionary, sparse
coefficients, and classifier parameters together, and can be optimized using a similar alternating
optimization, while each subproblem differs. We first describe how we optimize for each variable.

Learning of W and U . The optimization of both embedding models are similar, except for the
reconstructive regularization onU . and the main bottleneck lies in the minimization of the O(Nm)
large-margin losses. Since the losses are non-differentiable, we solve the problems using stochastic
subgradient method. Specifically, we implement the proximal gradient algorithm in [17], handling
the `-2 norm constraints with proximal operators.

Learning B. This is similar to the sparse coding problem, but simpler. We use projected gradient
method, where at each iteration t, we project the solution of the objective βt+

1
2

c for category c to `-1
norm ball and nonnegative orthant, to obtain βtc that satisfies the constraints.

Alternating optimization. We decompose Eq. 8 to two convex problems: 1) Optimization of the
data embeddingW and approximation parameterB (Since the two variable do not have direct link
between them) , and 2) Optimization of the category embedding U . We alternate the process of
optimizing each of the convex problems while fixing the remaining variables, until the convergence
criterion 1 is met, or the maximum number of iteration is reached.

Run-time complexity. Training: Optimization of W and U using proximal stochastic gradi-
ent [17], have time complexities of O(ded(k+1)) and O(de(dk+m)) respectively. Both terms are
dominated by the gradient computation for k(k � N) sampled constraints, that is O(dedk). Outer
loop for alternation converges within 5-10 iterations depending on ε. Test: Test time complexity is
exactly the same as in LME, which is O(de(C + d)).

4 Results

We validate our method for multiclass categorization performance on two different datasets gener-
ated from a public image collection, and also test for knowledge transfer on few-shot learning.

4.1 Datasets

We use Animals with Attributes dataset [1], which consists of 30, 475 images of 50 animal classes,
with 85 class-level attributes 2. We use the Wordnet hierarchy to generate supercategories. Since

1‖W t+1 −W t‖2 + ‖U t+1 −U t‖2 + ‖Bt+1 −Bt‖2 < ε
2Attributes are defined on color (black, orange), texture (stripes, spots), parts (longneck, hooves), and other

high-level behavioral properties (slow, hibernate, domestic) of the animals
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there is no fixed training/test split, we use {30,30,30} random split for training/validation/test. We
generate the following two datasets using the provided features. 1) AWA-PCA: We compose a 300-
dimensional feature vectors by performing PCA on each of 6 types of features provided, including
SIFT, rgSIFT, SURF, HoG, LSS, and CQ to have 50 dimensions per each feature type, and concate-
nating them. 2) AWA-DeCAF: For the second dataset, we use the provided 4096-D DeCAF features
[18] obtained from the layer just before the output layer of a deep convolutional neural network.

4.2 Baselines

We compare our proposed method against multiple existing embedding-based categorization ap-
proaches, that either do not use any semantic information, or use semantic information but do not
explicitly embed semantic entities. For non-semantics baselines, we use the following: 1)Ridge
Regression: A linear regression with `-2 norm (Eq. 1). 2) NCM: Nearest mean classifier from [11],
which uses the class mean as category embeddings (uc = xµc ). We use the code provided by the
authors3. 3) LME: A base large-margin embedding (Eq. 3) solved using alternating optimization.

For implicit semantic baselines, we consider two different methods. 4) LMTE: Our implementation
of the Weinberger et al. [7], which enforces the semantic similarity between class embeddings as
distance constraints [7], where U is regularized to preserve the pairwise class similarities from a
given taxonomy. 5-7) ALE, HLE, AHLE: Our implementation of the attribute label embedding in
Akata et al. [4], which encodes the semantic information by representing each class with structured
labels that indicate the class’ association with superclasses and attributes. We implement variants
that use attributes (ALE), leaf level + superclass labels (HLE), and both (AHLE) labels.

For our models, we implement multiple variants to analyze the impact of each semantic entity and
the proposed regularization. 1) LME-MTL-S: The multitask semantic embedding model learned
with supercategories. 2) LME-MTL-A: The multitask embedding model learned with attributes. 3)
USE-No Reg.: The unified semantic embedding model learned using both attributes and supercate-
gories, without semantic regularization. 4) USE-Reg: USE with the sparse coding regularization.

As for the parameters, we use the projection dimensionality of de = 50 for all our models. 4 For
other parameters, we find the optimal value by cross-validation on the validation set. We set µ1 = 1
that balances the main and auxiliary task equally, and search for µ2 for discriminative/generative
tradeoff, in the range of {0.01, 0.1, 0.2 . . . , 1, 10}, and set `-2 norm regularization parameter λ = 1.
For sparsity parameter γ1, we set it to select on average several (3 or 4) attributes per class, and for
disjoint parameter γ2, we use 10γ1, without tuning for performance.

Flat hit @ k (%) Hierarchical precision @ k (%)
Method 1 2 5 2 5

No
semantics

Ridge Regression 19.31 ± 1.15 28.34 ± 1.53 44.17 ± 2.33 28.95 ± 0.54 39.39 ± 0.17
NCM [11] 18.93 ± 1.71 29.75 ± 0.92 47.33 ± 1.60 30.81 ± 0.53 43.43 ± 0.53

LME 19.87 ± 1.56 30.47 ± 1.56 48.07 ± 1.06 30.98 ± 0.62 42.63 ± 0.56

Implicit
semantics

LMTE [7] 20.76 ± 1.64 30.71 ± 1.35 47.76 ± 2.25 31.05 ± 0.71 43.13 ± 0.29
ALE [4] 15.72 ± 1.14 25.63 ± 1.44 43.42 ± 1.67 29.26 ± 0.50 43.71 ± 0.34
HLE [4] 17.09 ± 1.09 27.52 ± 1.20 45.49 ± 0.61 30.51 ± 0.48 44.76 ± 0.20

AHLE [4] 16.65 ± 0.47 26.55 ± 0.77 43.05 ± 1.22 29.49 ± 0.89 43.41 ± 0.65
Explicit
semantics

LME-MTL-S 20.77 ± 1.41 32.09 ± 1.67 50.94 ± 1.21 33.71 ± 0.94 45.73 ± 0.71
LME-MTL-A 20.65 ± 0.83 31.51 ± 0.72 49.40 ± 0.62 31.69 ± 0.49 43.47 ± 0.23

USE USE-No Reg. 21.07 ± 1.53 31.59 ± 1.57 50.11 ± 1.51 33.67 ± 0.55 45.41 ± 0.43
USE-Reg. 21.64 ± 1.02 32.69 ± 0.83 52.04 ± 1.02 33.37 ± 0.74 47.17 ± 0.91

Table 1: Multiclass classification performance on AWA-PCA dataset (300-D PCA features).

4.3 Multiclass categorization

We first evaluate the suggested multitask learning framework for categorization performance. We
report the average classification performance and standard error over 5 random training/test splits
in Table 1 and 2, using both flat hit@k, which is the accuracy for the top-k predictions made, and
hierarchical precision@k from [12], which is a precision the given label is correct at k, at all levels.

Non-semantic baselines, ridge regression and NCM, were outperformed by our most basic LME
model. For implicit semantic baselines, ALE-variants underperformed even the ridge regression

3http://staff.science.uva.nl/˜tmensink/code.php
4Except for ALE variants where de=m, the number of semantic entities.
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Flat hit @ k (%) Hierarchical precision @ k (%)
Method 1 2 5 2 5

No
semantics

Ridge Regression 38.39 ± 1.48 48.61 ± 1.29 62.12 ± 1.20 38.51 ± 0.61 41.73 ± 0.54
NCM [11] 43.49 ± 1.23 57.45 ± 0.91 75.48 ± 0.58 45.25 ± 0.52 50.32 ± 0.47

LME 44.76 ± 1.77 58.08 ± 2.05 75.11 ± 1.48 44.84 ± 0.98 49.87 ± 0.39

Implicit
semantics

LMTE [7] 38.92 ± 1.12 49.97 ± 1.16 63.35 ± 1.38 38.67 ± 0.46 41.72 ± 0.45
ALE [4] 36.40 ± 1.03 50.43 ± 1.92 70.25 ± 1.97 42.52 ± 1.17 52.46 ± 0.37
HLE [4] 33.56 ± 1.64 45.93 ± 2.56 64.66 ± 1.77 46.11 ± 2.65 56.79 ± 2.05

AHLE [4] 38.01 ± 1.69 52.07 ± 1.19 71.53 ± 1.41 44.43 ± 0.66 54.39 ± 0.55
Explicit
semantics

LME-MTL-S 45.03 ± 1.32 57.73 ± 1.75 74.43 ± 1.26 46.05 ± 0.89 51.08 ± 0.36
LME-MTL-A 45.55 ± 1.71 58.60 ± 1.76 74.67 ± 0.93 44.23 ± 0.95 48.52 ± 0.29

USE USE-No Reg. 45.93 ± 1.76 59.37 ± 1.32 74.97 ± 1.15 47.13 ± 0.62 51.04 ± 0.46
USE-Reg. 46.42 ± 1.33 59.54 ± 0.73 76.62 ± 1.45 47.39 ± 0.82 53.35 ± 0.30

Table 2: Multiclass classification performance on AWA-DeCAF dataset (4096-D DeCAF features).

baseline with regard to the top-1 classification accuracy 5, while they improve upon the top-2 recog-
nition accuracy and hierarchical precision. This shows that hard-encoding structures in the label
space do not necessarily improve the discrimination performance, while it helps to learn a more
semantic space. LMTE makes substantial improvement on 300-D features, but not on DeCAF fea-
tures.

Explicit embedding of semantic entities using our method improved both the top-1 accuracy and
the hierarchical precision, with USE variants achieving the best performance in both. Specifically,
adding superclass embeddings as auxiliary entities improves the hierarchical precision, while using
attributes improves the flat top-k classification accuracy. USE-Reg, especially, made substantial
improvements on flat hit and hierarchical precision @ 5, which shows the proposed regularization’s
effectiveness in learning a semantic space that also discriminates well.

Category Ground-truth attributes Supercategory + learned attributes

Otter

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, . . .

A musteline mammal that is quadrapedal, flippers, furry,
ocean

Skunk

An animal that is smelly, black, stripes, white, tail, furry,
ground, quadrapedal, new world, walks, . . . A musteline mammal that has stripes

Deer

An animal that is brown, fast, horns, grazer, forest,
quadrapedal, vegetation, timid, hooves, walks, . . . A deer that has spots, nestspot, longneck, yellow, hooves

Moose

An animal that has horns, brown, big, quadrapedal, new
world, vegetation, grazer, hooves, strong, ground,. . . A deer that is arctic, stripes, black

Equine N/A An odd-toed ungulate, that is lean and active
Primate N/A An animal, that has hands and bipedal

Table 3: Semantic description generated using ground truth attributes labels and learned semantic decomposi-
tion of each categorys. For ground truth labels, we show top-10 ranked by their human-ranked relevance. For
our method, we rank the attributes by their learned weights. Incorrect attributes are colored in red.

4.3.1 Qualitative analysis

Besides learning a space that is both discriminative and generalizes well, our method’s main ad-
vantage, over existing methods, is its ability to generate compact, semantic descriptions for each
category it has learned. This is a great caveat, since in most models, including the state-of-the
art deep convolutional networks, humans cannot understand what has been learned; by generating
human-understandable explanation, our model can communicate with the human, allowing under-
standing of the rationale behind the categorization decisions, and to possibly allow feedback for
correction.

To show the effectiveness of using supercategory+attributes in the description, we report the learned
reconstruction for our model, compared against the description generated by its ground-truth at-
tributes in Table 3. The results show that our method generates compact description of each cat-
egory, focusing on its discriminative attributes. For example, our method select attributes such as
flippers for otter, and stripes for skunk, instead of attributes common and nondescriminative such as
tail. Note that some attributes that are ranked less relevant by humans were selected for their dis-
criminativity, e.g., yellow for dear and black for moose, both of which human annotators regarded

5We did extensive parameter search for the ALE variants.
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Figure 2: Learned discriminative attributes association on the AWA-PCA dataset. Incorrect attributes are
colored in red.
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Figure 3: Few-shot experiment result on the AWA dataset, and generated semantic decompositions.

as brown. Further, our method selects discriminative attributes for each supercategory, while there
is no provided attribute label for supercategories.

Figure 2 shows the discriminative attributes disjointly selected at each node on the class hierarchy.
We observe that coarser grained categories fit to attributes that are common throughout all its chil-
dren (e.g. pads, stalker and paws for carnivore), while the finer grained categories fit to attributes
that help for finer-grained distinctions (e.g. orange for tiger, spots for leopard, and desert for lion).
4.4 One-shot/Few-shot learning

Our method is expected to be especially useful for few-shot learning, by generating a richer descrip-
tion than existing methods, that approximate the new input category using either trained categories
or attributes. For this experiment, we divide the 50 categories into predefined 40/10 training/test
split, and compare with the knowledge transfer using AHLE. We assume that no attribute label is
provided for test set. For AHLE, and USE, we regularize the learning of W with W S learned
on training class set S by adding λ2‖W −W S‖22, to LME (Eq. 3). For USE-Reg we use the
reconstructive regularizer to regularize the model to generate semantic decomposition using US .

Figure 3 shows the result, and the learned semantic decomposition of each novel category. While all
methods make improvements over the no-transfer baseline, USE-Reg achieves the most improve-
ment, improving two-shot result on AWA-DeCAF from 38.93% to 49.87%, where USE comes in
second with 44.87%. Most learned reconstructions look reasonable, and fit to discriminative traits
that help to discriminate between the test classes, which in this case are colors; orange for leopard,
gray for hippopotamus, blue for humpback whale, and arctic (white) for Persian cat.

5 Conclusion

We propose a unified semantic space model that learns a discriminative space for object categoriza-
tion, with the help of auxiliary semantic entities such as supercategories and attributes. The auxiliary
entities aid object categorization both indirectly, by sharing a common data embedding, and directly,
by a sparse-coding based regularizer that enforces the category to be generated by its supercategory
+ a sparse combination of attributes. Our USE model improves both the flat-hit accuracy and hier-
archical precision on the AWA dataset, and also generates semantically meaningful decomposition
of categories, that provides human-interpretable rationale.
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