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Abstract

Visual attributes expose human-defined semantics to ob-

ject recognition models, but existing work largely restricts

their influence to mid-level cues during classifier training.

Rather than treat attributes as intermediate features, we

consider how learning visual properties in concert with ob-

ject categories can regularize the models for both. Given

a low-level visual feature space together with attribute-

and object-labeled image data, we learn a shared lower-

dimensional representation by optimizing a joint loss func-

tion that favors common sparsity patterns across both types

of prediction tasks. We adopt a recent kernelized formula-

tion of convex multi-task feature learning, in which one al-

ternates between learning the common features and learn-

ing task-specific classifier parameters on top of those fea-

tures. In this way, our approach discovers any structure

among the image descriptors that is relevant to both tasks,

and allows the top-down semantics to restrict the hypothe-

sis space of the ultimate object classifiers. We validate the

approach on datasets of animals and outdoor scenes, and

show significant improvements over traditional multi-class

object classifiers and direct attribute prediction models.

1. Introduction

Visual attributes are human-understandable properties

shared among object categories (e.g., “glassy”, “has legs”),

and are a compelling way to introduce high-level seman-

tic knowledge into predictive models. Recent work shows

that attributes are valuable in several interesting scenarios,

ranging from description of generic images or unfamiliar

objects [11, 9, 24], to zero-shot transfer learning [13], to

intermediate features that aid in distinguishing people, ob-

jects, and scenes [12, 13, 9, 27].

Existing approaches to attribute-based recognition as-

sume that the attributes’ role is primarily to focus learn-

ing effort on properties that will be reusable for many cate-

gories of interest, and to elegantly integrate human knowl-

edge into discriminative models. As such, attribute classi-

polar bear dalmatian white spots

ym1 ya1 yaAymM

polar bear dalmatian white spots

Object 

class
Attributes 

l ifiym1 ya1 yaAymMclass 

classifier
classifier

 11  12  D(M+A)

u1 u2 uD

Shared

features
……u3

Input visual featurex1 x2 x3 xD

……

Figure 1. In our model, object categories and their human-defined

visual attributes share a lower-dimensional representation (dashed

lines indicate zero-valued connections), thereby allowing the

attribute-level supervision to regularize the learned object models.

fiers are learned independently from object classifiers, and

then their predictions are treated as “mid-level” features

that bridge low-level image features and high-level object

classes. However, segregating supervision about attributes

from supervision about objects may restrict their impact. In

particular, in conventional models, even though attributes

influence object predictions, the attribute-labeled training

data does not directly introduce new information when dis-

criminatively learning the objects.

We explore how learning visual attributes in concertwith

object categories can strengthen recognition. The assump-

tion is that both types of prediction tasks rely on some

shared structure in the original image descriptor space. In

other words, patterns among those generic visual proper-

ties that humans elect to namemay reveal information about

which low-level cues are valuable to object recognition—in

the most general case, whether the objects of interest exhibit

those attributes or not. Thus, rather than treat attributes as

intermediate features, we propose an approach to discover

this structure and learn a shared lower-dimensional repre-

sentation amenable to discriminative models for either one

(see Figure 1). In effect, we show how human-defined se-

mantics (as revealed by attributes) can regularize training

for object classifiers.
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Given a low-level visual feature space together with

attribute- and object-labeled image data, we learn a fea-

ture subspace for all labeling tasks based on a joint loss

function that favors common sparsity. The optimization

process alternates between regularizing towards shared fea-

tures, and retraining task-specific classifiers based on those

features. Our technique directly builds on a multi-task fea-

ture learning algorithm developed in [1], where it was ap-

plied to collaborative filtering of consumer data. To im-

prove its scalability, we provide a more efficient kernel-

ized implementation and linear algebra shortcuts for deal-

ing with large matrices. Additionally, while in [1] all tasks

are assumed to have the same label space, our setting entails

non-overlapping label spaces (attributes, objects), for which

feature-sharing is expected to be more challenging.

It is well-known that the success of multi-task learning or

feature sharing hinges on the assumption that the input tasks

are indeed related. Why should the assumption hold in our

case? What makes attributes “special” as auxiliary tasks for

object learning? Intuitively, their relation is intrinsic, since

attributes are by definition shared among object categories.

Many object-level distinctions can be made using a vocabu-

lary of relevant properties, suggesting that a representation

sufficient to distinguish the properties would also be rele-

vant for the objects (e.g., a child learning to discriminate

cows from other animals might focus on the visual prop-

erties a cow exclusively has but other animals do not). In

fact, in early visual processing, it is known that the human

visual system discovers some sparse coding using a feature

“vocabulary” of low-level filters [17].

More abstractly, we expect that structure among a wide

span of attribute classifiers could reveal information about

which low-level features are valuable to human understand-

ing of the visual world. That is, even attributes that are

not relevant to distinguishing a particular object may still

help to constrain the space of image descriptors suitable for

higher-level recognition problems. Finally, there is a prac-

tical incentive for treating attributes as auxiliary tasks re-

garding supervision cost: for many attributes, knowing the

real world object-attribute relationship is sufficient to trans-

fer object-level image labels to attribute-level labels (i.e., all

buildings are manmade, so if we have a labeled image of a

building, it is also an image of the manmade attribute).1

In short, our contribution is threefold: 1) we design a

method for feature sharing between object and attribute pre-

diction tasks; 2) we verify with experiments on two datasets

that feature sharing can offer noted improvements in accu-

racy for target object categorization tasks; and 3) we explore

to what extent different attributes are useful for a target task,

and provide some initial ideas for automatic selection of rel-

evant attributes to limit training costs.

1This is the case for many binary attributes, but of course not all at-

tributes (e.g., some bicycles are red, some are blue).

2. Related Work

Attributes and their applications: Recent work shows

that attributes are useful in a variety of settings. First, they

are independently useful to describe familiar and unfamiliar

things (e.g., the leopard is spotted and furry, whether or not

we know to call it a leopard [9, 11]), or to search through

large image/video collections in semantic terms [24]. Sec-

ond, they enable new zero-shot learning paradigms, where

one can build an object model on the fly [13]. Third, they

can serve as mid-level features to an object classification

layer; having learned to predict the presence of each at-

tribute, one can build supervised object models on top of

those predictions [12, 13, 9, 27]. Usually attribute-object

associations are manually specified, but somework explores

ways to obtain them automatically [26, 6, 21]. Notably,

nearly all models using attributes for recognition learn them

independently.

Relating objects and attributes: The “indirect at-

tribute prediction” model [13] offers a way to regularize at-

tribute predictions based on object predictions; however, the

attribute-object connections are set by human-given defini-

tions, and so the two are not jointly learned. The novel mul-

tiple instance learning (MIL) approach in [25] jointly trains

attribute and object detectors with weakly labeled data, with

a constraint that both models should agree on localization

(e.g., if an image is tagged “blue cap”, both MIL classifiers

should prefer to select positive training instances from the

same location). In contrast, our data is strongly labeled, and

our method influences the feature space construction, not

training instance selection. The method in [27] integrates

attribute- and object-based cues into a structured latent

SVM model: the attribute labels are left as latent variables

on the training data, and the objective is to minimize object

prediction loss. In contrast, we show the value in discov-

ering a single shared representation such that both attribute

and object tasks can be predicted well. Thus, while [27] im-

plicitly discovers object-attribute relationships, we exploit

the two simultaneously as explicit tasks.

Transfer and multi-task learning: Transfer learning is

a related way to regularize object learning. The focus has

been on inter-class transfer between objects [10, 5, 22, 20],

and jointly training detectors so that features are shared

across objects [23, 3, 29], which lends to better efficiency

during detection. In contrast, the proposed feature sharing

spans multiple target label spaces, and our emphasis is gen-

eralization ability rather than efficiency. Multi-task learn-

ing [7] is often accomplished through feature sharing, and

some vision work explores text [19, 14] or pattern match-

ing [2] data as auxiliary tasks. We are the first to explore

multi-task learning with attributes, which (relative to other

sources of auxiliary tasks) has potential advantages of in-

trinsic task relevance and supervision “reuse”, as discussed

above.
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3. Approach

We describe in detail the approach we take to learn

shared features between objects and their attributes. Our

work directly builds on a previous approach [1]. Being

mindful of desired large-scale learning settings, however,

we extend the method by providing faster and more scalable

numerical techniques. Additionally, we adapt the models to

handle classification tasks where the label sets are disparate.

We start by describing the basic setup for learning fea-

tures frommultiple tasks. Then we explain how the problem

can be cast as convex optimization for both linear and ker-

nel classifiers. Finally, we discuss extensions and improve-

ments we have developed in order to apply the approach.

3.1. Basic Setup and Notation

There are two groups of classification tasks. We aim to

improve object classification accuracy; thus, we refer to the

objects as the main task, and the attribute classifiers as aux-

iliary tasks. Note that the two groups have different sets of

labels.

We use multi-class support vector machines (SVMs) for

the main task [8]. Let M denote the number of object

classes, xn ∈ R
D denote the n-th feature vector in the train-

ing data and yn its class label. The multi-class SVM has M

parameter vectors {w∗
m}Mm=1, one for each class. In the

most basic setting, we consider linear discriminants which

are parameterized by wm ∈ R
D. Let W denote the matrix

whose columns arewm. To identifyW , we minimize a loss

function that maximizes the discriminant wT
yn

xn,

W
∗ = argmin

∑

n

ℓ({wT
mxn}Mm=1, yn) + γ

∑

m

‖wm‖22

where γ ≥ 0 is a tradefoff parameter that regularizes the

model complexity, using the parameter’s 2-norm.

For learning A auxiliary tasks, we use yna to denote the

label for the a-th auxiliary task and wa for the correspond-

ing model parameter. Our auxiliary tasks are binary classifi-

cation of attributes. We use the squared hinge loss for these

tasks. For simplicity, the notation assumes that both the

main task and auxiliary tasks are trained on the same feature

vectors. However, this is not mandatory, as we demonstrate

in our results.

We use t ranging from 1 to T = (M + A) to index all

parameter vectors for the main and auxiliary tasks. To

avoid unnecessary notation clutter, with a slight abuse,

we use
∑

M

t=1
ℓ(wT

t xn, ynt) in lieu of ℓ({wT
mxn}Mm=1, yn),

namely, the true object function for the main task.

3.2. Learning Shared Features via Regularization

Conventionally, all T parameters {wm}Tt=1 are learned

by independently training (1+A) classifiers. For linear dis-
criminants such as w

T
mxn, the resulting parameter often re-

veals how effective features are. For instance, a zero-valued

element wmi indicates that the i-th feature of xn does not

play a role in classifying objects. Thus, intuitively, for

related tasks, we expect their parameters to reveal similar

sparsity patterns. Furthermore, we hypothesize that shared

patterns will enable more effective parameter training—for

example, reducing feature space dimensionality, thus im-

proving classification performance. How can we identify

such common patterns across tasks?

This desideratum is achieved in two steps. The first is

to transform the original features to a shared feature space

U
T
xn ∈ U for all tasks [1, 4]. The second step is to learn

models in the space of U and promote a common sparsity

pattern in the new parameters. Concretely, we express the

discriminant in {θt} such that wt = Uθt. Analogously to

W , we collect all θt in Θ ∈ R
D×T. We jointly optimize all

loss functions, but regularized with Θ’s (2, 1)-norm,

Θ
∗, U

∗ = argmin
∑

t

∑

n

ℓ(θT
t U

T
xn, ynt) + γ‖Θ‖22,1

(1)

The norm is given by ‖Θ‖2,1 =
∑D

d=1

√
∑

t θ2
td. An im-

portant property of this norm is that it computes the 2-norm

of parameter values in each dimension across tasks. Conse-

quently, for any dimension d, the regularization attains the

minimum if and only if the corresponding parameters are all

zero: θtd = 0 for all t. Therefore, the regularization would
choose the Θ with the smallest number of non-zero rows.

The discriminant θT
t U

T
xn depends only on nonzero el-

ements of θt. Thus eq. (1) yields solutions that use a subset

of features that are commonly effective for all tasks. Similar

ideas have also been explored in other settings [28, 15].

The optimization of eq. (1) is challenging due to the non-

smoothness of the regularization term. We next describe the

alternating minimization algorithm proposed in [1].

3.3. Convex Optimization

The optimization algorithm of [1] starts by identifying

eq.( 1) with its equivalent form

W
∗, Ω

∗ = arg min
∑

t

∑

n

ℓ(wT
t xn, ynt)

+ γ
∑

t

w
T
t Ω

−1
wt + γǫ Trace(Ω−1),

(2)

where Ω ∈ R
D×D is constrained to be a positive definite

matrix with bounded trace Trace (Ω) = 1. ǫ ≪ 1 is

a smoothing parameter for numerical stability and benign

convergence properties (cf. Theorem 3 in [1]). Ω’s role can

be understood more clearly by relating the solutions to the

two problems eq. (1) and eq. (2):

W
∗ = U

∗
Θ

∗, Ω
∗ = U

∗ Diag

(

{ ‖Θd‖2
‖Θ‖2,1

}D

d=1

)

U
∗T

(3)
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Input: training data (xn, {ynt}), ǫ, γ
Output: W

∗, Ω∗

1: Initialize Ω with a scaled identity matrix 1

D
I

2: while W still changes between two iterations do

3: Compute transformed variables according to eq. (6)

4: Solve ŵt according to eq. (5)

5: Compute wt as wt = Ω
1/2

ŵt

6: Update Ω according to eq. (7)

7: end while

Algorithm 1: Learning Shared Features for Linear Classifier [1]

where the operator Diag(· · · ) converts its D-element argu-

ments as elements of a diagonal matrix. ‖Θd‖2 is the 2-

norm of Θ’s d-th row:
√
∑

t θ2
td. Intuitively, the diagonal

measures relatively howmuch each row ofΘ is “non-zero”.

Therefore, the matrix Ω measures relative effectiveness of

each feature dimension.

We gain further insight by drawing an analogy to

the maximum a posteriori (MAP) estimator when the

prior distribution for the parameter wt is a Gaussian

N (wt |0;Σ−1). The regularization term of the MAP es-

timator is in the form w
T
t Σ

−1
wt. Therefore, intuitively, Ω

functions as an estimator of the covariance structure, com-

puted from all parameters wt (or equivalently, θt), over all

tasks.

Eq. (2) is computationally advantageous for it is a convex

optimization. To solve it, we alternatively minimize over

{wt} andΩwhile holding the other fixed. WhenΩ is fixed,

each wt can be identified as

w
∗

t = argmin
∑

n

ℓ(wT
t xn, ynt) + γw

T
t Ω

−1
wt . (4)

With two simple variable substitutions, the optimization

takes the standard form of ℓ2-norm regularization:

ŵ
∗

t = argmin
∑

n

ℓ(ŵT
t zn, ynt) + γ‖ŵt‖22, (5)

zn ← Ω
1/2

xn, ŵt ← Ω
−1/2

wt. (6)

When the parameters {w} are fixed, the optimal Ω that

minimizes eq. (2) has a closed-form solution:

Ω =
(WW

T + ǫI)1/2

Trace
[

(WW T + ǫI)1/2
] . (7)

The alternating minimization procedure monotonically

decreases the objective function until the optimum solution

is reached. Algorithm 1 lists the key steps. We set the hy-

perparameters γ and ǫ using a validation data set.

3.4. Extension to Kernel Classifiers

The feature learning framework can be extended to

kernel-based nonlinear classifiers. We apply the kernel con-

struction of [1]. Let K(xn, xn′) denote the kernel function

between two original feature vectors xn and xn′ . The ker-

nel induces a nonlinear feature mapping φ(xn) ∈ H ⊂ R
H.

We perform feature learning in this new space H.
To “kernelize”, note that the optimal parameter W ∈

R
H×T for the models is a linear combination of (training)

feature vectors. This can be understood intuitively by ob-

serving that eq. (5) is the standard formulation of an SVM;

therefore the solution {ŵ∗
t } is a linear combination of fea-

ture vectors. The same statement is also true for W , as the

two are linearly related as in eq. (6).

It is computationally convenient to express W using the

basis V of the feature space H: W = V α (we have

adopted a slightly different notation from [1] by adhering

to the standard nomenclature in SVMs). We assume the

number of basis vectors in V is B < N where N is the total

number of feature vectors. The matrix α is the linear com-

bination matrix, each column for a task. The basis V can

be computed from the kernel matrix formed from training

feature vectors, for instance, through eigendecomposition

or Gram-Schmidt (G-S) orthogonalization. We use the lat-

ter technique for its slightly lower computational overhead.

Concretely, we randomly choose B training feature vectors

S and express the basis in the linear combination of those

features, V = ΦSB, where the matrix ΦS’s columns are

the nonlinear features computed from the chosen training

instances. The matrix B ∈ R
B×B stores the linear combi-

nation coefficients, computed by the G-S process.

The parameter W is also linearly represented, as W =
ΦSBα. Analogous to eq. (2), the optimal α is then:

α, Ω
∗ = argmin

∑

t

∑

n

ℓ(αT
t zn, ynt)

+ γ
∑

t

α
T
t Ω

−1
αt + γǫ Trace(Ω−1).

(8)

where αt is the t-th column of α. zn = B
T
kS(xn) is the

transformed data, resulting from the linear discriminant in

the feature spaceH,

w
T
t φ(xn) = (Bαt)

T
Φ

T
Sφ(xn) = α

T
t B

T
kS(xn), (9)

where the vector kS(xn) ∈ R
B consists of the elements of

the kernel function k(xn, xb) = φ(xb)
Tφ(xn).

The optimization problem eq. (8) is now readily solvable

using techniques described previously. Key steps are given

in Algorithm 2.

3.5. Other Extensions

We propose several additional extensions, addressing is-

sues that naturally arise in our setting.

Modeling disparate sets of labels As opposed to [1], our

main task and auxiliary tasks have different sets of labels

and different types of loss functions. Thus, we use two reg-

ularizers, one for each group. In the linear classifier case,
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Input: training data (xn, {ynt}), ǫ, γ, and B

Output: α
∗, Ω∗, B

1: Formulate kernel matrix K

2: Compute the basis B,S ← GRAM-SCHMIDT(K , B)
3: Transform data according to eq. (9) and S
4: α

∗

,Ω
∗ ← ALGORITHM 1((zn, {ynt}), ǫ, γ)

Algorithm 2: Learning Features for a Kernel Classifier

our optimization takes the form,

W
∗, Ω

∗ = arg min
∑

t

∑

n

ℓ(wT
t xn, ynt) + ǫ Trace(Ω−1)

+
M
∑

t=1

γMw
T
t Ω

−1
wt +

T
∑

t=M+1

γAw
T
t Ω

−1
wt

(10)

where γM is used for the main task and γA for auxiliary

tasks. When γA is set to zero, the optimization learns shared

features from parameters for all object classes, without at-

tributes. We term this setup as “Sharing-Obj”. When γM is

constrained to be the same as γA, we recover eq (2).

Handling high-dimensional features The alternating

minimization algorithm described in Section 3.3 depends

on re-estimatingΩ and computing its square rootΩ1/2 with

eq. (3) and eq. (6). For the high-dimensional features used

in our setting, directly computing these quantities is costly.

We exploit the low-rank property of Ω to circumvent this

challenge. Note that the matrix W has T columns and

D≫ T rows. Thus,W can be factorized with “thin” singu-

lar value decomposition: W = LSR
T, where L ∈ R

D×T

and R ∈ R
T×T are W ’s (partial) left and right eigenvec-

tors. The diagonal matrix S ∈ R
T×T is composed of W ’s

singular values {σi(W )}Ti=1. With some algebraic manip-

ulation, we identify the eigenvalues of Ω:

λi(W ) =

(

√

σ2
i (W ) + ǫ

)

/ρ, λ(ǫ) =
√

ǫ/ρ (11)

ρ =

T
∑

i=1

√

σ2(W ) + ǫ +
√

ǫ [D− T] . (12)

The eigenvectors in L and the subspace orthogonal to them

span precisely Ω’s column space. This yields,

Ω = L Diag
(

{λi(W )}Ti=1

)

L
T + λ(ǫ)(I −LL

T). (13)

The matrix Ω
1/2 can be formulated similarly, replacing

λi(W ) and λ(ǫ) with their square roots.

Choosing the kernel basis For the kernelized version,

one needs to choose B basis vectors to expand the kernel

feature space, as described in Section 3.4. We use two sim-

ple heuristics. We choose B large enough such that the per-

formance of using the B basis vectors for individual task

learning is close to the performance of our baseline sys-

tem’s. The individual task learning is set up as a linear clas-

sifier using the transformed feature vectors eq. (9), while

the baseline system’s are kernel-based nonlinear classifiers

using the original features.

For the Gram-Schmidt process, we choose B/M feature

vectors randomly from each of M classes. This gives bal-

anced coverage of different features, and in practice works

better than purely randomly selecting without taking object

class into consideration.

4. Results

We validate our approach against relevant baselines, and

report results on object categorization, the main target task.

Datasets We consider two datasets: the Animals with At-

tributes dataset (AWA) [13], and the Outdoor Scene Recog-

nition dataset (OSR) [16]. AWA contains 30,475 images,

50 animal classes, and 85 attributes.2 Each image is la-

beled by the animal and attributes present. OSR has 2,688

images, 8 scene classes, and 6 attributes as given in [16]:

natural, open, perspective, size, diagonal plane, and depth.

We asked another vision researcher to make the assignment

from attributes to scenes. We apply random train-test splits,

ensuring balance among object classes. Throughout, we use

“object” to refer to an animal or scene.

Baselines We consider two baselines: 1) a traditional

multi-class object recognition approach using an SVM with

a χ2 kernel computed on image features, which we refer

to as No sharing-Object, or NSO, and 2) an approach that

treats attributes as intermediate features, which we call No

sharing-Attribute, or NSA. For NSA, we train SVMs on

image features to predict attribute labels, and then treat their

outputs as features to a multi-class logistic regression clas-

sifier. This baseline follows the basic direct attribute predic-

tion (DAP) approach defined in [13]. We use LIBSVM.

Image features All methods use the same original image

features. For AWA, we use the six (SIFT, rgSIFT, PHOG,

SURF, LSS, RGB) provided with the dataset, each up to

2688-D. For OSR we generate 512-D Gist and 45-D LAB

color histograms. We average the kernels computed over

multiple feature types. Note that both datasets permit global

descriptors, since there is one primary object of interest per

image. To test with multi-object images, one would apply a

window-based detector.

4.1. Impact of Sharing Features

First we evaluate the object recognition accuracy of our

approach and the baselines. Our approach gets the same

training images for both the attribute and object tasks. We

form four training splits of increasing size (10% to 60%),

2For all methods, we use the 59 attributes exceeding 70% accuracy as

reported in [13], since some are unpredictable from the given features.
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Method / % train data

No sharing-Obj. (NSO)

No sharing-Attr. (NSA)

Sharing-Obj. (Ours)

Sharing+Attr. (Ours)

% gain over NSO

% gain over NSA

50-class Animals Dataset

10% 20% 40% 60%

31.96 38.12 44.08 48.03

31.03 35.61 41.12 43.59

37.08 41.01 46.46 49.15

36.73 42.60 47.70 50.94

14.92% 11.75% 8.21% 6.06%

18.37% 19.63% 16.00% 16.86%

8-class Scenes Dataset

10% 20% 40% 60%

76.76 79.75 83.03 83.74

57.77 58.98 60.50 60.78

78.76 81.49 85.05 86.06

78.09 81.62 85.89 87.01

1.73% 2.34% 3.44% 3.90%

35.17% 38.39% 41.97% 43.16%

Table 1. Accuracy on both datasets, as a function of training set size. Learning shared representations with our approach significantly

improves generalization on the novel test set, and can be most pronounced when labeled training data is limited.

and reserve the rest for validation and testing (20% each).

We demonstrate two variants of our approach: Sharing-

Obj, where we learn a common representation for all ob-

ject classes simultaneously, corresponding to γA = 0 in

eq. (10), and Sharing+Attributes, where we learn the space

for all objects and attributes, corresponding to γA = γM .

Table 1 shows the results. Our feature sharing ap-

proach offers significant improvements over both ‘No shar-

ing’ baselines, and we obtain the best results when jointly

learning with both the objects and attributes. The last two

rows summarize gains of Sharing+Attributes over the base-

lines. Our improvements over the NSO baseline are per-

haps most informative, since the general approach taken

by NSO (multiple image features, kernel combination, non-

linear SVM) is typical in state-of-the-art image recognition

techniques.

While the margin between our Sharing-Object and Shar-

ing+Attributes variants is smaller than the margin between

not sharing at all versus sharing, the impact of attributes is

clear and consistent. A one-tailed paired t-test on the 60%
training split confirms that the accuracy gain with attribute

tasks is statistically significant (for α = 5% on AWA and

α = 1% on OSR). By separately tuning the γM and γA reg-

ularization weights, we expect even better performance; we

simply let them be equal to save computation time.

Interestingly, on the larger AWA set, our gains are largest

for smaller labeled data pools, supporting our claim that

attribute feature sharing can have a beneficial regulariza-

tion effect for object learning. This is an encouraging re-

sult, particularly since obtaining attribute labels on object-

labeled data has minimal additional overhead for many at-

tribute types, as discussed previously. Figure 2 visualizes

the shared features over iterations, showing how we con-

verge to a common sparse set.

Figure 3 breaks out the prediction accuracy per object

category on both datasets. We improve accuracy for 33

of the 50 AWA classes, and yield correct predictions for

some classes the baselines miss completely (e.g., beaver,

rat). On OSR, the absolute accuracy is higher overall, due

to the smaller multi-way decision. However, NSA suffers

due to the insufficiency of the attribute vocabulary; it hap-

pens that the scenes tallbuilding and insidecity

have exactly the same attribute definitions. In contrast, our

ta
s
k
s

features
features

ta
s
k
s

Figure 2. Hinton diagram of the matrix Θ in the initial and last

iterations of Alg. 2. Each square is a matrix entry, and area reflects

the entry’s magnitude. For clarity only a partial matrix is shown,

for the first 30 features (horizontally) and the first 10 object classes

(vertically). The matrix at the last iteration is much sparser.

approach accounts for attributes while still learning features

sufficient to make the distinction.

One might ask whether some arbitrary grouping of ob-

ject classes into tasks might also have similar benefits. That

is, are our gains due to the attributes’ meaning, or could

it be a sort of “error-correcting code” effect? To analyze

this, we test a baseline where each object’s attribute labels

are randomly reassigned to other attributes, and then ap-

ply our method (for five such random assignments on the

60% training split). On OSR, we find this baseline offers no

improvement over Sharing-Object (decreasing accuracy by

0.06). On AWA, the baseline improves over Sharing-Object

(by 0.97 on average), but by less than sharing with real at-

tributes (which increases accuracy by 1.79). This indicates

the attribute semantics are indeed a factor in our method’s

success.3

In the remaining text, we report our results using Shar-

ing+Attributes, and we focus on the AWA data, since it is

11x larger and has a richer set of attributes.

4.2. Impact of Disjoint Training Images

Our model is flexible to the source of object- and

attribute-labeled data, and we can train the tasks on disjoint

sets of images. This is relevant when one has a large set of

existing attribute-labeled data, and wants to use it to regu-

larize the training process for a new set of object models.

Thus, we next examine the impact of which images are

used as the auxiliary attribute tasks to train the object clas-

3Looking closely at the AWA data, we see that the baseline’s small gain

made with randomly assigned attribute labels may be misleading. Because

the classes are fine-grained, any random assignment of labels can overlap

with meaningful attributes; the 85 attribute labels in AWA are certainly not

exhaustive for the 50 animals.
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Figure 3. Accuracy on AWA (left) and OSR (right) classes. Our approach outperforms methods that learn objects (No sharing-Object) or

attributes (No sharing-Attributes) independently.

Image source for attributes

Method Same Disjoint All

No sharing-Object (NSO) 72.99 72.99 72.99

Sharing+Attribute 76.40 76.32 77.05

% gain 4.67% 4.56% 5.56%

Table 2. Object prediction accuracy as a function of which image

pool is used for the attribute tasks, on the 10-class AWA subset.

sifiers. We select 10 classes (the same as [13]) to train the

object classifiers, and test three variations for learning the

attributes: 1) the same images used for the objects, 2) a dis-

joint set of images containing object classes outside of the

10, and 3) all images, the union of the previous two.

Table 2 shows the results. Interestingly, we see that our

method performs similarly whether the attribute data over-

laps or not (see first two columns). This suggests that the

value of the attributes is not simply having deeper/stronger

labels on the very same training examples; rather, it is the

fact that we identify a common space where both types of

labels are well predicted. The table also indicates that more

attribute-labeled images is helpful (cf. last column).

4.3. Selecting Relevant Attributes

Having tested the impact of which images have attribute

labels, next we consider the impact of which attribute

classes are leveraged as auxiliary tasks. Presumably, not

all attributes will benefit feature sharing, and—as usual in

multi-task learning—some may be detrimental. Even if all

attributes were relevant to some degree, we may want to be

selective to save training costs.

Thus, we explore a simple form of automatic attribute se-

lection in which we rank all attributes by their mutual infor-

mation (MI) with the 10 animals4. Figure 4 (left) displays

the computedMI, from the most informative attributes (e.g.,

“spots”, which chimps and pigs lack, but leopards and pan-

das have) to the least (e.g., none of the 10 animals “fly”).

Figure 4 (right) shows the impact of using the MI scores

to select attributes for sharing. Both dotted curves denote

our method, but one uses the k most informative attributes,

and the other uses the k least informative attributes.5 The

4chimp, panda, leopard, persian cat, hippo, whale, raccoon, rat, seal
5Note, we simply fix the γ and ǫ parameters for all cases, in order to

0 0.5 1

oldworld

flys

horns

longneck

tunnels

stalker

newworld

coastal

fish

lean

fast

furry

agility

meatteeth

spots

Mutual information

0 10 20 30 40 50 60 70 80 90
74.6

74.8

75

75.2

75.4

75.6

75.8

76

76.2

A
c
c
u
ra

c
y
 (

%
)

k

Selecting relevant attributes

 

 

0 10 20 30 40 50 60 70 80 90
200

400

600

800

1000

1200

1400

1600

1800

T
ra

in
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Lowest mutual information

Highest mutual information

Figure 4. Left: Mutual information scores. Right: Object classi-

fication accuracy and training time as a function of the number of

attribute tasks included.

most interesting cases are for lower values of k. (For higher
values of k, the “most” and “least” sets overlap more, and

they’re identical at k = 85.)
The results show that using the 20 attributes with the

highest MI yields the best accuracy, while using the low-

est 20 is slightly worse than using none whatsoever. Fur-

ther, we see that more attribute classes do not necessarily

always help. These findings plus the fact that training time

increases linearly with k (see solid green line, right axis),

suggest it is practical to choose intelligently. This result

also shows the potential for performing task selection out-

side of the feature sharing learning procedure.

4.4. Semantically Meaningful Predictions

Finally, we analyze to what extent the semantics we in-

troduce by jointly training objects and attributes are man-

ifest in our method’s predictions. Figure 5 compares the

confusion matrices for our method (c) and NSO (b). To

judge the “reasonableness” of their errors, in (a) we depict

the true relationships between all pairs of the 10 objects. To

obtain this matrix, we use human subjects’ ratings collected

in [18] about the relative strength of association between the

85 attributes and 50 objects in AWA. For each object, we

create a vector of its 85 property “strengths”, and then com-

pute the pairwise χ2 kernel values between all such vectors.

Brighter boxes indicate greater true association in (a), and

higher confusion in (b,c). Thus, if a method captures se-

mantics well, its confusion matrix will look more like (a).

see the effect of the attribute selection in isolation.
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Figure 5. Confusions made by the baseline (b) and our method (c)

relative to human-given object relationships (a).

First, we notice that our method boosts accuracy for most

classes, raising the mean diagonal from 66.9% to 68.9%.

Second, we see that the pairs for which our method most

reduces confusions (e.g., pig vs rat) are more distinctive

semantically. On the flip side, some closely related pairs

become confused by our method (e.g., raccoon vs cat).

Figure 6 shows example animal category and attribute pre-

dictions, compared alongside NSO and NSA.

5. Conclusions

This work shows that by learning a common feature

space suitable to either attribute or object tasks, we can

obtain noticeably stronger object recognition results. We

demonstrated the proposed method’s improved generaliza-

tion accuracy and its potential to make more predictable er-

rors in terms of human-defined semantics. In future work,

we plan to continue our exploration of automatic task selec-

tion, and consider how to optimally combine the regulariza-

tion per object and attribute.
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