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Abstract

In multi-class categorization tasks, knowl-
edge about the classes’ semantic relationships
can provide valuable information beyond the
class labels themselves. However, existing
techniques focus on preserving the seman-
tic distances between classes (e.g., according
to a given object taxonomy for visual recog-
nition), limiting the influence to pairwise
structures. We propose to model analogies
that reflect the relationships between mul-
tiple pairs of classes simultaneously, in the
form “p is to q, as r is to s”. We translate se-
mantic analogies into higher-order geometric
constraints called analogical parallelograms,
and use them in a novel convex regularizer
for a discriminatively learned label embed-
ding. Furthermore, we show how to dis-
cover analogies from attribute-based class de-
scriptions, and how to prioritize those likely
to reduce inter-class confusion. Evaluating
our Analogy-preserving Semantic Embedding
(ASE) on two visual recognition datasets, we
demonstrate clear improvements over exist-
ing approaches, both in terms of recognition
accuracy and analogy completion.

1. Introduction

Discriminative approaches to object categorization
have shown much success in recent years. However,
as the community shifts its focus towards fine-grained
and large-scale recognition problems, the traditional
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view of object categories as isolated low-level visual
patterns is restrictive.

Therefore, researchers have begun to explore how
semantic relationships between categories might in-
form a purely discriminative approach. By view-
ing the classes as interrelated entities in some la-
tent semantic space, the goal is not only to im-
prove the ultimate recognition accuracy, but also to
yield models that make semantically reasonable er-
rors. Recent work makes use of semantic knowl-
edge that is proprietary (i.e., attribute-based) or
inclusive (i.e., taxonomy-based) (Zweig & Weinshall,
2007; Lampert et al., 2009; Wang & Mori, 2010;
Fergus et al., 2010; Zhao et al., 2011; Hwang et al.,
2011b;a). For example, one approach is to require that
semantically related categories select a common set of
features (Zhao et al., 2011); another is to use mid-
level semantic attributes to regularize object repre-
sentations (Lampert et al., 2009; Wang & Mori, 2010;
Hwang et al., 2011b). However, those methods focus
on each individual class’s relationships and properties;l
thus they are limited to pairwise semantic structures.

Moving beyond per-class semantic relatedness, our
goal is to exploit higher-order relationships jointly in-
volving multiple classes. Specifically, we propose to
model analogies between classes in the form “p is to q,
as r is to s” (or, in shorthand, p : q = r : s). An anal-
ogy encodes the relational similarity between two pairs
of semantic concepts. By augmenting labeled data in-
stances with a set of semantic analogies during train-
ing, we aim to enrich the learned representation and
thereby improve generalization. Analogies can be de-
fined with almost arbitrary abstraction, ranging from
“is-a” relationships (dog : canine = cat : feline),
to contextual dependencies (fish : water = bird :
sky). To examine analogies most likely to benefit vi-
sual learning, we restrict our focus to analogical pro-
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portions (Miclet et al., 2008)—analogies between pairs
of concrete objects in the same semantic universe and
with similar abstraction level.

Before sketching our approach, we first motivate why
this form of analogy should offer new information to
a learning algorithm. As any standardized test-taker
knows, analogies are used to gauge both vocabulary
skills and reasoning ability. Notably, the pairs of en-
tities involved in an analogy need not share proper-
ties. For example, in the analogy planet : sun =
electron : nucleus, the planet and electron do
not have anything in common; rather, the relational
similarity (orbiter and center) is what makes us rec-
ognize the two pairs as parallel in meaning (Gentner,
1983). Furthermore, the common difference exhibited
by the two pairs in an analogy may encapsulate a com-
bination of multiple properties—and that combination
need not have a succinct semantic name. For exam-
ple, in the analogy leopard : cat = wolf : dog, the
common difference relating the two pairs entails mul-
tiple low-level concepts; in both, the first class lives in
the wild, has fangs, and is more aggressive, etc. Thus,
to master analogies, one must not only estimate the
similarity of words, but also infer the abstract rela-
tionships implied by their pairings.

Accordingly, we expect analogies to benefit a feature
learning algorithm in ways that semantic distance con-
straints alone cannot. Whereas existing methods in-
ject only “vocabulary skills” by requiring that seman-
tically related instances be close and semantically un-
related ones be far, our method will also inject “rea-
soning ability” by requiring that the common differ-
ences implied by analogies be reflected in the learned
semantic feature space. Often, the higher-order con-
straints may connect quite distant sets of categories.
The analogies can thus facilitate a form of transfer
from class pairs that are more easily discriminated
in the original feature space to analogous class pairs
that are not. For example, suppose leopard and
cat are often confused in the visual space because the
training set consists of only close-up images, whereas
dog and wolf are easily separable due to their dis-
tinct backgrounds. Enforcing the analogy constraint
leopard : cat = wolf : dog could make the sep-
aration in the first pair clearer, by aligning it with
the same hypothetical semantic axis of differences
(wild/fanged/aggressive) shared by the second (more
distinctive) pair.

We propose an Analogy-preserving Semantic Embed-
ding (ASE), which embeds features discriminatively
with analogies-based structural regularization. Given
a set of analogies involving various object categories,

leopard:cat = wolf:dog 

leopard:tiger = horse:zebra 

Visual feature space Analogies 

Semantic Embedding Space 

Regularization 

Figure 1. We introduce analogical parallelogram con-
straints to regularize a semantic embedding. By learning
from both labeled instances and analogies, our method pre-
serves structural similarities between category pairs.

we translate each one into a geometric constraint called
an analogical parallelogram. This constraint states
that the difference between the first pair of categories
should be the same as the that between the second
pair, where each category is represented by a (learned)
prototype vector in some hypothetical semantic space.
See Figure 1. We represent the constraints as a novel
regularizer that augments a large-margin label embed-
ding. Consequently, we obtain an embedding where
examples with the same label are mutually close (and
far from differently labeled points) and analogical par-
allelograms have nearly parallel sides.

Our learned embedding can be used for recognition,
automatic analogy completion, visualization, and po-
tentially other tasks. To use it for recognition, we
project a novel image into the learned space, and pre-
dict its label based on the nearest category prototype.
We further show how to automatically discover and
prioritize useful analogies, which is valuable to concen-
trate on constraints that are influential for recognition.

Compared to traditional large-margin label embed-
dings (Weinberger & Chapelle, 2009; Bengio et al.,
2010), our approach preserves a new form of rela-
tional similarity. While the prior methods also map
to a space where semantic similarities are preserved,
they risk learning spurious associations between fea-
tures and labels. Our analogy-induced regularizer mit-
igates such adverse effects by constraining the hypoth-
esis space with structural relations between category
pairs, yielding robust models with better generaliza-
tion. Even constraints not in the axes of visual prop-
erties can be helpful, as they shift the focus from brittle
incidental correlations to higher-order semantic ties.

2. Related Work

Analogical logic and learning Several findings
from cognitive science and AI provide background for
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our approach. Gentner et al. (Gentner, 1983) study
analogies in light of human cognition. They define an
analogy as a relational similarity over two pairs of en-
tities, and contrast it with the more superficial similar-
ity defined by attributes. Based on this intuition, they
suggest a conceptual structural mapping engine that
enables analogical reasoning (Gentner & Markman,
1997). Recognizing that such generic analogies require
high-level logical reasoning that may be problematic
for an automated prediction system, Miclet et al. sug-
gest focusing on the analogical dissimilarity between
entities in the same semantic universe (Miclet et al.,
2008). They exploit analogical dissimilarity to do
direct logical inference when one of the entities is
unknown. Our work focuses on similarly scoped
analogies—the semantic universe of object categories.
In contrast to their logical inference model, however,
we propose geometric constraints to enforce analogical
proportions in a learned embedding.

While our main idea is to use analogies in an embed-
ding, we also show how to automatically discover cat-
egories that have analogical relationships using their
attribute descriptions. In this respect, there is a con-
nection to structural transfer learning work that dis-
covers mappings between domains (Mihalkova et al.,
2007; Wang & Yang, 2011). However, while that work
aims to associate distinct source and target domains
(e.g., computer viruses and human viruses), we aim to
detect parallel associations within the same domain,
and then use those pairings to constrain feature learn-
ing. In graphics, inferring the filter relating two input
images allows the automatic creation of “image analo-
gies” (Hertzmann et al., 2001); we deal with analogies
on visual data, but our idea of using them to regular-
ize the representation is different and original.

Semantics in recognition Recent research ex-
plores how external semantic knowledge can ben-
efit visual recognition, e.g., (Zweig & Weinshall,
2007; Lampert et al., 2009; Wang & Mori, 2010;
Fergus et al., 2010; Hwang et al., 2011b;a; Zhao et al.,
2011). There, the semantics originate from taxonomies
or attribute memberships, limiting what can be cap-
tured to proprietary or inclusive relations. To our
knowledge, our work is the first to exploit analogi-
cal relations in learning an object recognition model,
opening up the potential advantages discussed above.

Embedding and manifold learning Most existing
embedding methods aim to preserve the distances be-
tween data points, either globally (Duda et al., 2001)
or locally (Roweis & Saul, 2000; Weinberger & Saul,
2006). Label embeddings learned for object or docu-
ment categorization also aim to preserve distances, but
with further constraints to promote the discriminabil-

ity of labeled classes (Weinberger & Chapelle, 2009).
Recent embedding methods preserve not only the ge-
ometry of local neighborhoods, but also higher-order
properties like category clusters (Shieh et al., 2011) or
graph structure (Shaw & Jebara, 2009). We also aim
to preserve more far-reaching structures. However, our
method is distinct in that it enforces the relative dis-
tances between semantically related pairs of instances.

3. Approach

We assume a labeled dataset D = {(xi, yi)}
N
n=1, where

xi ∈ R
D stands for the i-th D-dimensional feature vec-

tor and yi ∈ Y the corresponding class label, which in
our primary application of interest will correspond to
an object category (panda, leopard, etc.) We fur-
ther assume that we have access to a set of analogies
A = {α1, α2, · · · , αA}. The analogies are derived ei-
ther directly from human input or with an automatic
discovery procedure we propose below.

The goal of our learning algorithm is to embed both
the data features and the class labels in a low-
dimensional space R

M with M < D, while minimiz-
ing misclassification errors. In what follows, we will
denote the embedding of the feature vector xi by zi,
and the embedding of the class c ∈ Y by uc. In this
“semantic space”, we want to ensure instances from
the same class stay close to each other and to their
class label’s location uc. Moreover, and most impor-
tantly, we would like the placement of the class labels
to reflect their analogy-based relationships.

To this end, our approach addresses two crucial chal-
lenges: i) how can we encode an analogy between class
labels via their coordinates in the learned semantic
space? and ii) how can we automatically discover anal-
ogy relationships among a large number of categories?

3.1. Encoding analogies

For each class c ∈ Y, uc ∈ R
M denotes its coordinates

in the M-dimensional semantic space. Each uc can
be thought of as a prototype for the category; we will
explain how the prototypes are optimized jointly with
the data projection matrix W in Sec. 3.3.

An analogy involves four categories, and we rep-
resent the relationship with an ordered quadruplet
(p, q, r, s) ∈ Y × Y × Y × Y. As we focus on ana-
logical proportions (Miclet et al., 2008), the difference
between p and q is equated with the difference between
r and s. Moreover, the difference between p and r also
is equated with the difference between q and s.

Analogical proportions naturally induce geometric
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constraints among the embeddings of the four cate-
gories in the semantic space. In particular, the geom-
etry is characterized by a parallelogram; we will show
how to exploit this structure in our learning algorithm.

Analogy parallelogram We use the vector shift
(uq − up) to represent the difference between the two
categories q and p in the semantic space. Note that
this difference is directed, that is, uq − up 6= up − uq.
The analogical proportion implied by (p, q, r, s) is thus
encoded by the following pair of equalities:

uq − up = us − ur, and ur − up = us − uq. (1)

These constraints form a parallelogram in which each
vertex is a category, as illustrated in Fig. 2.

Convex regularizer There are several ways of en-
forcing the analogical proportion constraints in eq. (1).
A natural choice is to exploit the parallel property
of opposing sides. Specifically, the normalized inner
products between opposing sides are the cosine of their
intersection degree, which should be 1 if perfectly par-
allel. Concretely, for an analogy α = (p, q, r, s), the
resulting parallelogram “score” would be defined as

S(α) =
1

2

 

(uq − up)
T(ur − us)

‖uq − up‖ · ‖ur − us‖
+

(ur − up)
T(us − uq)

‖ur − up‖ · ‖us − uq‖

!

.

(2)

While intuitive, maximizing the parallelogram score
(or equivalently, minimizing its negative) is compu-
tationally inconvenient, since it is not convex in the
embeddings u. Thus, we use a relaxed version and
compare the sides only in their lengths. Specifically,
our regularizer is defined as

R(α) =1/σ1‖(uq − up) − (ur − us)‖
2

2

+ 1/σ2‖(ur − up) − (us − uq)‖
2

2,
(3)

where σ1 and σ2 are two scaling constants used to pre-
vent either pair of sides from dominating the other. We
simply estimate them as the mean distances between
data instances from different classes.

R(α) is convex in the embedding coordinates. More-
over, it is straightforward to kernelize as it depends
only on the distances (and thus inner products).

3.2. Automatic discovery of analogies

Human knowledge is a natural source for harvesting
analogy relationships among categories. However, it
is likely expensive to completely rely on human as-
sessment to acquire a sufficient number of analogies
for training. To address this issue, we use auxiliary
semantic knowledge to identify candidate analogies.

= 
= 

| 

| 

Input space 

p:q = r:s 

Semantic space 

Figure 2. Geometry of ASE. Analogy constraints for

the semantic category embedding: The analogy
quadruplet (p, q, r, s) forms a parallelogram in the semantic
embedding space, cf. eq. (1). Data embedding W : At
the same time, when projected onto the semantic space by
W , the data point xi from class q should be closer to its
semantic category embedding uq, compared to any other
category embedding, by a large margin (see dotted circles).

In the context of visual object recognition, visual
attributes are an appealing form of auxiliary se-
mantic knowledge (Lampert et al., 2009). Attributes
are binary predicates shared among certain visual
categories—for example, the category panda has the
“true” value for the spotted attribute and the “false”
value for the orange attribute. Supposing we have
access to attribute descriptions stating the typical at-
tribute values for each category, we can automatically
discover plausible analogies.

We next define two strategies to do so. The first is in-
dependent of the data instances, while the second ex-
ploits the instances to emphasize analogies more likely
to lend discriminative information.

Attribute-based analogy discovery Our first
strategy is to view attributes as a proxy to the embed-
ding coordinates of the visual categories in the seman-
tic space we are trying to learn. In the attribute space,
each category is encoded with a binary vector, with
bits set to one for attributes the class does possess,
and bits set to zero for attributes the class does not
possess. Note that this is a class-level description—we
have one binary vector per object class.

Imagine that we enumerate all quadruplets of visual
categories. For each quadruplet α, we compute its par-
allelogram score according to eq. (2), using the cate-
gories’ attribute vectors as coordinates. We then select
top-scoring quadruplets as our candidate analogies.

Pragmatically, we can only score a subset of all pos-
sible analogies for a large number of visual categories.
Thus, to ensure good coverage, for each randomly se-
lected pivot category p, we select at most K triplets
of other categories, where K is far fewer than the to-
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tal number of possible ones. We also remove equiva-
lent analogies. For example, (p, q, r, s) is equivalent to
(p, r, q, s) or other shift-invariant forms.

We will use the highest-scoring analogies to augment
the class-labeled data when learning the embedding.
We stress that while we discover analogies based on
parallelogram scores computed in the space of at-
tribute descriptions, we regularize the learned em-
bedding according to parallelogram scores computed
in the learned embedding coordinates (cf. Sec. 3.3).
Thus, external semantics drive the “training” analo-
gies, which in turn mold our learned semantic space.

Discriminative analogy discovery The process de-
scribed thus far has two possible issues. First, it does
not take the data instances into consideration. While
our goal is to find a joint embedding space for both
data instances and category labels, analogies inferred
purely from attributes do not necessarily align the data
and mid-level representations—they might even lead
to conflicting embedding preferences! Secondly, being
fully unsupervised, this procedure need not discover
analogies directly useful to our classification task. In
particular, the extracted candidate analogies are not
indicative of whether two categories are easily distin-
guishable or confused.

We address both issues with an intuitive and empiri-
cally very effective heuristic. Mindful of our goal (de-
scribed in the introduction) of improving discrimina-
tion for confusable categories by leveraging analogy
relationships connecting those confusing categories to
easily distinguishable categories, we first use baseline
classifiers to estimate the pairwise confusability be-
tween categories. This step can be achieved easily
with any off-the-shelf multi-way classifier and visual
features computed from the training instances. The
confusability between two categories p and q is defined
in terms of the resulting misclassification error:

Cpq = 0.5 [ǫp→q + ǫq→p] ,

where ǫp→q is the rate of misclassifying instances from
the category p as the category q, and likewise for ǫq→p.

Our next step is to refine the candidate analogies gen-
erated above by finding those with unbalanced confus-
ability. Specifically, for each analogy α = (p, q, r, s),
we compute its discrimination potential:

P (α) = |log(1 + Cpq) − log(1 + Crs)| . (4)

This score attains its maximum when Cpq and Crs are
drastically different—that is, if one is 0 and the other
is 1. We use this score to re-rank the K candidate
analogies generated for each category p. Intuitively,

we seek the quadruplet where one pair of categories is
easily distinguishable (based on the image data) while
the other pair is difficult to differentiate. Precisely
by enforcing their analogy relationship, we expect the
easy pair to assist discrimination for the difficult one.

To summarize, our automatic discovery of analogies is
a two-phase strategy. We first use an auxiliary seman-
tic space to identify a set of candidate analogies where
the four categories are highly likely to form a parallel-
ogram. Then, we analyze misclassification error pat-
terns of these categories and use the scoring function
in eq. (4) to determine the potential of each analogy
in improving classification performance. We describe
next how to use the highest-scoring analogies to learn
the joint embedding of both features and categories.

3.3. Discriminative learning of the ASE

Next we explain how we regularize a discriminative
embedding to account for the analogies.

Large margin-based discrimination We aim to
learn a projection matrix W ∈ R

M×D to map each data
instance (image example) xi into the semantic space,
giving its M-dimensional coordinates zi = Wxi.

1 The
ideal projection matrix W should make zi close to its
corresponding label’s embedding uyi

and distant to
all other labels’ embeddings (Weinberger & Chapelle,
2009). Specifically, we enforce the large margin con-
straint for every training instance,

‖Wxi−uyi
‖2

2
+1 ≤ ‖Wxi−uc‖

2

2
+ξic, ∀ c 6= yi (5)

where ξic ≥ 0 is a slack variable for satisfying the
separation by the margin of 1.

Regularization To jointly embed both features and
class labels, we regularize so that the class labels in the
analogy set A form parallelograms as much as possible.
The regularizer is given by

Rtotal(A) =
∑

a

ωaR(αa), (6)

which is the weighted sum of the regularization de-
fined in eq. (3) for each analogy αa. If using the “raw”
attribute-based analogies, the weight ωa = S(αa), thus
enforcing stricter regularization for category quadru-
plets whose structure is closer to a “perfect” anal-
ogy. If using discriminatively discovered analogies, the
weight is instead ωa = P (αa), thus prioritizing those
that are more discriminative.

Additionally, we also constrain the parameters W

and all uc with their Frobenius norms: ‖W ‖2

F and

1Nonlinear embeddings are possible via kernelization.
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R(u) =
∑

c ‖uc −uprior
c ‖2

2. In particular, for the class
label embeddings, we constrain them to be close to
our prior knowledge on their locations uprior

c . The
prior knowledge could be null such that we set uprior

c

to zeroes. Or, the class label embeddings could be
computed from auxiliary information, for example, the
multi-dimensional embedding of class labels where the
dissimilarities between labels are measured with tree
distances from a taxonomy (Weinberger & Chapelle,
2009) or attributes. We consider both in the results.

3.4. Numerical optimization

Our learning problem is thus cast as the following op-
timization problem:

min
W ,{uc}

∑

ic

ξic + λRtotal(A) + µ ‖W ‖F + τR(u) (7)

subject to both the large margin constraints in eq. (5)
and non-negativity constraints on the slack variables
ξic. The regularization coefficients λ, µ, and τ are
determined via cross-validation.

The optimization is nonconvex due to the
quadratically-formed large margin constraints.
We have developed two methods for solving it. Our
first method uses stochastic (sub)gradient descent,
where we update W and uc according to their sub-
gradients computed on a subset of instances. Despite
its simplicity, this method works well in practice and
scales better to problems with many categories.

We also consider a convex relaxation analogous to the
procedure in (Weinberger & Chapelle, 2009). Briefly,
in eq. (7), we hold {uc} fixed first and solve W in
closed-form, W = UQ where the matrix U is com-
posed of {uc} as column vectors. The matrix Q de-
pends only on xi and is constant with respect to U

or W . Substituting the solution of W into both the
objective function eq. (7) and the large margin con-
straints eq. (5), we can reformulate the optimization in
terms of UTU . In particular, the original non-convex
large margin constraints in U can be relaxed into con-
vex if we reparameterize UTU as a positive semidef-
inite matrix V . We then solve V and recover the
solutions U and W , respectively. For cases where D is
much larger than the number of categories, we expect
this variant to optimize faster.

4. Experimental Results

We validate three aspects: i) the effectiveness of our
analogy discovery approach; ii) recognition accuracy
when incorporating discovered analogies in learning
embeddings; and iii) “fill in the blank”—a Graduate

Record Examination (GRE)-style prediction task of
filling in the category that would form a valid analogy.

Datasets and implementation details We use
three datasets created from two public image datasets:
Animals with Attributes (AWA), which contains 50
animal classes (Lampert et al., 2009) and ImageNet,
which contains general object categories (Deng et al.,
2009). They were chosen due to their available at-
tribute descriptions and their challenging diverse con-
tent. From AWA, we create two datasets: AWA-10 of
6, 180 images from 10 classes (Lampert et al., 2009),
and the complete 50-class AWA-50 of 30, 475 im-
ages. From ImageNet, we use the 50-class ImageNet-
50 with annotated attributes (Russakovsky & Fei-Fei,
2010), totaling 70, 380 images.

We use the features provided by the authors, which
consist of SIFT and other texture and color descrip-
tors. We use PCA to reduce the feature dimensional-
ity to D = 150 for efficient computation. Additionally,
we augment ImageNet-50 with attribute labels for col-
ors, material, habitat, and behaviors (e.g., big, round,
feline), yielding 39 and 85 binary attributes for Ima-
geNet and AWA, respectively. We fix K = 10, 000. We
use the convex relaxation, since the dimensionality is
much greater than the number of classes; accordingly,
the semantic space dimensionality M equals the num-
ber of categories (10 or 50).

4.1. Automatic discovery of analogies

In real-world settings, acquiring all analogies from
manual input may be costly and impractical. Thus, we
first examine the analogies discovered by our method
(Sec. 3.2), which assumes only that attribute-labeled
object classes are available.

Figure 3 displays several examples for AWA-50 and
ImageNet-50. Most analogies are intuitive to un-
derstand. For example, in the second row of col-

lie:dalmatian = lion:leopard, the categories col-

lie and lion are both furry and brown, while the cate-
gories dalmatian and leopard are both spotted and
lean. We also see that the analogies can be largely
visual (e.g., the third row), an upshot of the many
visually relevant attributes offered with the datasets.

4.2. Visual recognition with ASE

We compare the classification performance of our
Analogy-preserving Semantic Embedding (ASE) to
the following baselines, all of which lack analogies:

(1) SVM-RBF: Multiclass SVM with RBF kernel.

(2) Large margin embedding (LME): The existing
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AWA-50

: = :
antelope lion zebra tiger

: = :
collie dalmatian lion leopard

Imagenet-50

: = :
comb button bridge ferriswheel

: = :
comb marimba macaque gorilla

Figure 3. Example analogies discovered from attributes.

technique of (Weinberger & Chapelle, 2009), which is
a special case of our approach where the effect of the
analogy regularizer is disabled by setting τ = 0 and
λ = 0 in eq. (7). For this baseline, the embeddings
of the class labels are constrained only to satisfy the
large margin separation criterion of eq. (5);

(3) Large margin embedding with attributes
prior (LMEprior): This baseline adds the prior regu-
larizer to LME, where we adjust τ for eq. (7) via cross-
validation. In particular, we use the multi-dimensional
scaling (MDS) embedding of class labels where the
pairwise dissimilarity is the Euclidean distance be-
tween the attribute vectors of two classes. The con-
trast between LME and LMEprior reveals how use-
ful attributes as auxiliary semantic information are in
yielding discriminative embeddings, separating out the
impact of attributes from the impact of analogies.2

All embedding methods classify novel images accord-
ing to the nearest category uc in the embedding space.

For our method, we include two variants, differentiated
only by how the analogies are discovered, cf. Sec. 3.2.
In ASE-A, the analogies are derived solely from at-
tributes, aiming to preserve parallelograms as much
as possible. In ASE-C, the analogies are derived from
the discrimination-based discovery, aiming to use dis-
tinct categories to assist confusable categories. The
confusability among categories is measured using the
baseline LME classifier on the validation set.

In our experiments, all hyperparameters (regulariza-
tion coefficients, kernel function parameters) are tuned
via cross-validation. We use 30 examples per class for
both training and testing, and use another 30 images

2We also tested LME using WordNet object distances
as a prior, but found it inferior to the attribute prior.

Table 1. Multiclass classification accuracy. The numbers
denote mean and the standard error over 5 runs.

Dataset AWA-10 AWA-50 ImageNet-50
#. analogies 5 50 50

SVM-RBF 43.00 ± 1.94 19.32±0.57 15.37±0.93
LME 44.40±2.83 19.65±0.90 16.52±1.10

LMEprior 44.93 ± 3.57 20.12±1.03 16.59±0.39
ASE-A (ours) 45.47±3.10 20.60±0.93 17.08±0.36
ASE-C (ours) 45.93±2.90 21.05±0.82 17.24±0.62

as a validation set to learn the parameters. We report
the average results over 5 such random splits.

How do analogies affect recognition accuracy?
We first validate our method on multiclass classifica-
tion. Since the analogies help preserve the intrinsic se-
mantic structure among objects, we expect the learned
space to show better generalization power, and hence
improved object categorization.

Table 1 shows the results.3 We report the optimal
number of analogies selected from preliminary experi-
ments, though the results were in general insensitive to
the number of analogies. On all three datasets, we ob-
serve clear improvement using our analogy-preserving
embedding variants over both LME variants.

We see that the difference in accuracy for LME and
LMEprior is in general smaller than the improvement
from LME to ASE. This suggests that using attribute
distances alone as a prior to constrain embeddings (as
LMEprior does) is not sufficient. In contrast, in ASE,
the prior and the analogy constraints work together,
leading to a noticeable improvement.

Which types of analogies should we use? We also
observe that our ASE-C variant outperforms ASE-A.
This coincides with our intuition that the analogies
would be much more helpful for discrimination if a
pair of easily confusable categories can leverage a pair
of easily distinguishable categories.

Detailed analysis supports this intuition even more
strongly. Figure 4 compares the amount of reduc-
tion in confusability among the 10 classes of AWA-
10, from LMEprior to either ASE-A (left) or ASE-C
(right). We observe that for ASE-A, the improvement
is made on pairs that are not included in the analogies;
in contrast, for ASE-C, the improvements are mostly
made on pairs that are included in analogies. This
noticeable correlation between the category pairs se-
lected for analogies, and the pairs whose confusion is
reduced (for ASE-C) suggests that our consideration
of the pairwise confusion is indeed the reason ASE-

3Attribute-based categorization (Lampert et al., 2009)
underperforms all baselines (AWA-10: 28.80, AWA-50:
17.80, ImageNet-50: 11.14).
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Figure 4. Confusion reduction. Left: CLME − CASE-A,
Right: CLME − CASE-C. The numbers and colors at each
entry show the reduction in confusion (red:↑, blue:↓). Out-
lined entries are pairs that appear in the training analo-
gies. Positive off-diagonal entries indicate reduced confu-
sion. ASE-C focuses on initially confused classes.
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Figure 5. AWA-50 categories projected to 2D using ASE-
C. We show only three analogies for ease of viewing:
1) dalmatian:siamese cat=killer whale:dolphin, 2)
lion:chihuahua = humpbackwhale:bluewhale, and 3)
chimp:gorilla = persian cat:walrus.

C outperforms ASE-A, whose analogies do not care
about the data distribution.

Figure 5 shows projections of AWA-50 categories to a
2D space using ASE-C. We see that the quadrilaterals
formed by the four categories involved in each analogy
do indeed show distinct parallelogram shape.

4.3. Completing a visual analogy

Finally, we subject our method to a GRE test. Given
p : q = r :?, how well can our method fill in the
blank, based on its representation of the three other
classes? In this analogical reasoning task, which is
performed by virtually every graduate school appli-
cant, the learning algorithm is given a set of complete
analogies Atrain. Then it is given a disjoint test set of
analogies Atest, each of which has its fourth category
missing. No analogies overlap in (p, q, r) between the
two sets. To fill in the blank with ASE or LME, we
simply rank each category according to its parallelo-
gram score when its uc is used as the fourth category.
The more parallelogram-like, the more it appears to
be the right answer. The ground truth answer is the
class maximizing the parallelogram score according to
the auxiliary attribute ground truth.

Our hypothesis is that by learning to discriminate cat-

Dataset AWA-10 AWA-50 Imagenet-50
k 1 3 1 3 1 3

Chance 14.29 42.86 2.13 6.38 2.13 6.38
LME 36.00 52.00 4.80 12.40 1.60 7.20

LMEprior 52.00 68.00 5.60 14.40 0.80 6.80
ASE-A 64.00 88.00 8.40 20.80 2.80 6.40
ASE-C 60.00 80.00 5.20 15.60 3.20 8.80

Table 2. Top-k class prediction accuracy, given an analogy
with an unknown class in the form p:q=r:?

Analogy question LME LMEprior ASE-A
AWA-50

leopard:lion = dalmatian:? bobcat s. monkey fox
horse:g.shepherd = sheep:? weasel antelope collie
skunk:mouse = killerwhale:? fox bluewhale dolphine

Imagenet-50
badger:skunk = button:? g.spider bathtub buckle
marimba:rule = baboon:? kitfox orangutan patas

b.ball:bathtub = r.coaster:? jaguar pooltable bridge

Table 3. Sample analogy completion results

egories in conjunction with preserving the analogy con-
straints in Atrain, the learned semantic embedding will
generalize well to complete the novel analogies, with-
out resorting to auxiliary information.

Table 2 strongly supports our hypothesis. We report
the prediction accuracy averaged over 5 random trials,
where we take the classes with the top k parallelogram
scores as guesses. ASE-A achieves the best accuracy,
followed by ASE-C. They both outperform the LME
methods, which lack analogical constraints. On AWA-
10, we predict the right completion in the first guess
(k = 1) 64% of the time. There is clearly room for
improvement, though, as accuracy decreases substan-
tially for all methods on the larger 50-class datasets.
Table 3 shows example completed analogies for AWA-
50. Compared to LME, ASE selects more intuitive
classes to fill in the missing values.

5. Conclusion

Our work introduces a semantic embedding for visual
data that preserves structural similarities in the form
of analogies. In addition to formulating a novel reg-
ularizer suitable for our goal, we also explore ways to
systematically discover plausible analogies from aux-
iliary attribute information. Our method improves
recognition accuracy over an existing “distance-only”
embedding approach, thanks to its ability to preserve
higher-order structures and facilitate transfer between
easier and harder pairs of objects. Beyond bene-
fitting recognition, we show it also allows analogy
completion—a high-level reasoning task. We next plan
to explore more general forms of analogies, such as
pairs of subgraphs containing multiple categories.
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