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Abstract
We propose a novel multi-task learning method
that minimizes the effect of negative transfer by
allowing asymmetric transfer between the tasks
based on task relatedness as well as the amount
of individual task losses, which we refer to as
Asymmetric Multi-task Learning (AMTL). To
tackle this problem, we couple multiple tasks via
a sparse, directed regularization graph, that en-
forces each task parameter to be reconstructed
as a sparse combination of other tasks selected
based on the task-wise loss. We present two dif-
ferent algorithms that jointly learn the task pre-
dictors as well as the regularization graph. The
first algorithm solves for the original learning
objective using alternative optimization, and the
second algorithm solves an approximation of it
using curriculum learning strategy, that learns
one task at a time. We perform experiments on
multiple datasets for classification and regres-
sion, on which we obtain significant improve-
ments in performance over the single task learn-
ing and existing multitask learning models.

1. Introduction
Multi-task learning (Argyriou et al., 2008; Caruana, 1997;
Kang et al., 2011; Kumar & Daume III, 2012) aims to im-
prove the generalization ability of the learners for different
tasks by jointly training them. While multi-task learning
has shown to outperform single-task learning in most cases,
the performance gain is usually small since not all tasks
benefit from the joint learning, which makes some of the
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participating learners to suffer from performance degener-
ation. This problem is known as ‘negative transfer’, and
is caused by the main assumption in most MTL methods,
which assumes that the information transfer will be sym-
metric between any two participating tasks that are cou-
pled by the joint learning; that is, the information transfer
from task a to b will be the same as the information transfer
from task b to a, if they are related. However, this symme-
try assumption will not be always beneficial for joint learn-
ing, since some tasks will be easier implying lower training
task-specific loss while some others will be more difficult
with higher training loss. For example, suppose that the
task a is to predict whether a visual instance ‘has wheels’
or not, and task b is to predict if a given visual object ‘is
fast’. Obviously the former will be much easier since it
can be easily predicted from the visual features, while the
predicting the latter from visual information is not straight-
forward. This resulting in learning a more confident pre-
dictor for task a, and we would only want to regularize the
learning of task b with the task a, although the two tasks
are related. Still, a conventional multitask learning method
will consider the two tasks as equal, which will result in the
former classifier suffering from negative transfer.

To overcome this intrinsic limitation of conventional sym-
metric multi-task learning methods, we need to allow for
asymmetric information transfer between the tasks, such
that the amount of information transfer from a confident
predictor to a less confident one is larger than the other
way around. We can achieve this objective by learning a
weighted directed regularization graph between the tasks,
such that more confident learners regularize the learning of
less confident ones, but not vice versa. Further, the graph
should be sparse since we do not want transfer to happen
between unrelated tasks. Based on these two ideas, we
propose Asymmetric Multi-task Learning (AMTL), which
simultaneously learns such sparse directed regularization
graph along with the predictors for each task. To this end,
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we first describe the generic asymmetric multitask learning
problem, and provide formal analysis on it. Then, we pro-
pose two algorithms to solve the problem, where the first
algorithm simultaneously trains the learners and the regu-
larization graph via alternating optimization, while the sec-
ond algorithm solves the problem in the curriculum learn-
ing fashion, which iteratively add in learners in the order of
increasing task loss and the similarities to later tasks.

We validate our method on multiple datasets for classifica-
tion and regression tasks, and obtain significant improve-
ment over the single-task learning and exiting multi-task
methods. We also show that the performance improve-
ment comes from the suppression of negative transfer, and
AMTL obtains even greater performance on datasets with
large imbalance in the number of training instances across
tasks, which is quite common in real-world data. Finally,
we show that AMTL can be also used as an analysis tool,
since it generates a sparse directed graph between the tasks
which allows easy interpretation of the relations among the
tasks.

Our contributions in this work are threefold:
• We tackle the novel problem of learning asymmetric

task relations in a multi-task learning framework, to
avoid the well-known negative transfer problem.

• We propose a novel multi-task learning formulation,
that allows to jointly learn a regularization graph along
with the task predictors, and propose both an alternat-
ing optimization algorithm and a curriculum learning
algorithm to solve the problem.

• We provide a theoretical justification of our AMTL
formulation, and empirically validate that it outper-
forms the symmetric multitask learning methods from
reduced negative transfer, with experiments on multi-
ple datasets.

2. Related Work
Transfer learning Our regularization term closely re-
sembles the least square-based regularization term in Tom-
masi et al. (2010), which is used to perform multi-model
transfer for a least-square one-vs-all SVM. However, our
method is generic for any loss and learns sparse transfer
weight to transfer only from relevant categories to avoid
negative transfer, while their method is tied to the specific
LS-SVM formulation and learns non-sparse weight due to
having a `2 norm regularization. Further, our method con-
siders optimal selection of tasks and regularization graph to
avoid negative transfer in multi-task learning setting, while
they assume a fixed set of source and target tasks.

Multitask learning Our method is an instance of multi-
task learning (Caruana, 1997), with the specific focus on
avoiding negative transfer, where the transfer between the

tasks results in performance degeneration. Most multi-task
learning methods either promote sharing of the features or
parameters to exploit shared information across multiple
tasks. Many recent work are closely related to the feature
learning method by Argyriou et al. (2008), which utilizes
(2, 1)-norm regularization to learn features shared across
multiple categories, and solves it using an equivalent con-
vex formulation. However this method enforces sharing
also between tasks that are distantly related, which results
in negative transfer. To overcome this problem, Kang et al.
(2011) propose to enforce feature sharing only between
closely related tasks, by alternating between the learning of
task groups using integer programming, and perform mul-
titask feature learning for each group. Kumar & Daume III
(2012) and Maurer et al. (2012) allow for more flexible
sharing between tasks by learning latent parameter bases
that are shared across all tasks. Saha et al. (2011) present
an online multi-task learning method that is relevant to our
work, where the pairwise relationships between tasks are
modeled using a positive definite matrix. However, it can-
not learn asymmetric task relations since the positive def-
initeness constraint on the formulation requires the rela-
tions to be symmetric. None of the aforementioned multi-
task learning methods consider the differences across task
losses and thus are susceptible to negative transfer. Asym-
metric multitask learning was mentioned in some prior lit-
eratures, but asymmetry there simply means either having
a pre-defined set of main and auxiliary tasks (Leen et al.,
2012) or training models for new tasks along with the ex-
isting models (Zhang & Yeung, 2010). On the other hand,
our method learns asymmetric task relationships based on
the task loss and relatedness.

Curriculum learning The term ‘curriculum learning’
was first used in Bengio et al. (2009), which showed that
learning easier instances first, and then gradually introduc-
ing more difficult examples speeds up the training process
and finds a good local minimum for non-convex learning.
This idea is further developed in Kumar et al. (2010), which
measures the ‘easiness’ of a task by examining the margin
of each instance to the classifier, and allows active selec-
tion of samples by the learner. Lee & Grauman (2011) ex-
ploit a similar idea for unsupervised learning, where they
iteratively discovered categories while using earlier learned
categories as the context of later learned ones. Ruvolo &
Eaton (2013) propose a curriculum learning method based
on an active task selection, which aims to maximize the
task diversity to learn better approximating latent param-
eter bases shared across all tasks. Perhaps the most rel-
evant work to ours in the context of curriculum learning
is Pentina et al. (2015), which regularizes the parameter of
a newly learned task to be similar to its immediate prede-
cessor, using `2 norm regularization. We also use regular-
izations on the task parameters to transfer knowledge, but
we allow to transfer from all previous tasks, while selecting
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confident tasks to transfer from, based on their loss. Fur-
ther when selecting a new task, we also consider its simi-
larity to all future tasks, to maximize the expected amount
of knowledge transfer across all tasks.

3. Asymmetric Multi-task Learning
We assume that we have T tasks with various degrees of
difficulties: for each task t ∈ {1, . . . , T}, we are given
training data Dt that consists of nt training points. Given
{Dt}Tt=1 training examples, let L(wt;Dt) be the loss func-
tion of model parameter wt on the training data Dt. For
simplicity, we assume that all tasks share the common data
space and the model space, and moreover T tasks are pos-
itively correlated. Having {w∗t }Tt=1 to denote the set of
target model parameters, the simplest statistical assump-
tion to this end is that each underlying model parameter is
succinctly represented by the linear combination of other
parameters: for all t ∈ {1, . . . , T}, w∗t ≈

∑T
s=1B

∗
stw
∗
s

where B∗ is a T × T asymmetric matrix representing
the amounts of information transfer between participating
tasks: B∗st is defined as the positive weight of basis w∗s in
representing w∗t , and the weight vector {B∗st}Tt=1 is sparse.
Note that for notational simplicity we can use B∗tt, but it is
uniformly defined as 0 for all t ∈ {1, . . . , T}.

Now, we propose a novel learning approach that allows
asymmetric information transfer from easier tasks to dif-
ficult ones. Here assuming that the reconstruction error
w∗t−

∑T
s=1Bstw

∗
s follows Gaussian distribution with small

variance, we use a regularizer of ‖wt−
∑T
s=1Bstws‖22 for

all tasks. To this end, our learning method jointly learns
{wt}Tt=1 and B from the following optimization problem:

minimize
W,B≥0

T∑
t=1

{(
1 + µ‖bot‖1

)
L
(
wt;Dt

)
+ λ
∥∥∥wt − T∑

s=1

Bst ws

∥∥∥2
2

}
(1)

where bot ∈ RT−1 is a vector indicating the amounts
of outgoing transfers from task t to all other tasks:
(Bt1, . . . , Bt(t−1), Bt(t+1), . . . , BtT )>, and (λ, µ) are the
tuning parameters that decide the relative importances be-
tween different terms. Note that B ≥ 0 represents the
set of all element-wise positivity constraints of a matrix,
which is an additional constraint just under the assump-
tion that B∗ ≥ 0. Also note that W contains wt, that is,
W := (w1, w2, . . . , wT ), for notational simplicity. One of
the important ingredient in (1) is the use of the `1 norm of
bot to encourage sparsity on B, which allows each predictor
to be succinctly represented by other predictors.

It is instructive to consider two extreme learning strategies
from (1): (i) when the regularization parameter λ = 0,

the minimum can be achieved at B = 0, and each task is
decomposable and trained independently, (ii) when λ ap-
proaches to ∞, on the other hand, the regularization term
becomes dominant and we should have nonzero (and possi-
bly dense even with ‖bot‖1 term) Bst so that the predictors
are linearly dependent. Then, the natural question arises
on how the pairwise edge Bst emerges as λ increases. The
following theorem can precisely answer on this:

Theorem 1 Consider the optimization problem (1). Then,
any local optimum (ŵ1, . . . , ŵT , b̂

o
1, . . . , b̂

o
T ) of (1) satis-

fies the following statement. For any t, u ∈ {1, . . . , T}
such that ‖b̂ot‖1 > ρ‖b̂ou‖1, either one of the following con-
ditions is true:

(a) L(ŵt;Dt) ≤ L(ŵu;Du), or

(b) For any vector bot and bou such that ‖bot‖1 = ‖b̂ou‖1 and
‖bou‖1 = ‖b̂ot‖1, we have
R
(
ŵ1, . . . , ŵT , b̂

o
1, . . . , b̂

o
t , . . . , b̂

o
u, . . . , b̂

o
T

)
≤ R

(
ŵ1, . . . , ŵT , b̂

o
1, . . . , b

o
t , . . . , b

o
u, . . . , b̂

o
T

)
whereR(W,B) is a regularization term in (1) computed at
W and B.

Proof sketch. First note that (1) is differentiable and
biconvex in {wt}Tt=1 and B. Let f be a continuous bi-
convex function on W and B. Then, for a continuous
biconvex function f , it is known that arbitrary stationary
point (Ŵ , B̂) with zero partial gradient is a partial op-
timal, meaning that f(Ŵ , B̂) ≤ f(W, B̂) for all W as
well as f(Ŵ , B̂) ≤ f(Ŵ ,B) for all B (Gorski et al.,
2007). Now, suppose that both the conditions (a) and
(b) are violated at the same time. Then, there exists
some b̄ot and b̄ou such that ‖b̄ot‖1 = ‖b̂ou‖1 and ‖b̄ou‖1 =

‖b̂ot‖1, and R
(
ŵ1, . . . , ŵT , b̂

o
1, . . . , b̂

o
t , . . . , b̂

o
u, . . . , b̂

o
T

)
>

R
(
ŵ1, . . . , ŵT , b̂

o
1, . . . , b̄

o
t , . . . , b̄

o
u, . . . , b̂

o
T

)
. Moreover,

since L(ŵt;Dt) > L(ŵu;Du), we are able to have bet-
ter objective with b̄ot and b̄ou than that with b̂ot and b̂ou, fixing
all other parameters, which contradicts with the previous
theorem on the partial optimal in Gorski et al. (2007). �

Problem (1) is not convex in general, and hence the
gradient-based algorithms will find the local optima of (1).
Nevertheless, since the problem is biconvex, this theorem
tells us that in any local optimum, the task with smaller
loss will have larger amounts of transfer as long as it does
not hurt the structural constraint in the second term of (1).

Discussions on the problem (1) The motivation behind
the optimization form (1) is to encourage a heterogeneous
knowledge transfer from easy tasks to difficult ones, as
shown in Theorem 1 (a). One caveat on this form is the
possibility of knowledge transfers from an overfitted task
with a small sample size nt. In order to alleviate this is-
sue, we can define different (or reweighed) loss functions
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across tasks: new loss function for task t is L′(wt;Dt) :=
ctL(wt;Dt) where ct is a scalar that should depend on the
degree of overfitting of task t. When the estimation error
is bounded by

√
1/n for size n training data (this holds for

linear or logistic regressions. See Negahban et al. (2012)
and the references therein), the natural selection would be
ct = 1/

√
nt. Practically, this value can be selected on a

separate validation set.

Another caveat is that the regularization term could be also
reduced by enforcing each task parameter to be represented
as a combination of parameters from unrelated confident
tasks. However, this does not happen in practice since it
will result in increased loss, and we have sparsity regular-
ization on B to select only strongly related tasks to regu-
larize each learner. Specifically, in Algorithm 1, we first
train independent task predictors and then learn regulariza-
tion graphs between them; thus the connection from the
unrelated tasks will be dropped in the first iteration, further
preventing such negative effect.

Optimization The optimization problem (1) is not con-
vex because of the first term which is the multiplication
of functions on wt and bot . Nevertheless, the optimization
problem is convex inB and convex inW as long as the loss
function L(·) is convex in W . For this biconvex optimiza-
tion problem, in this paper, we utilize an iterative alternat-
ing optimization technique that solves convex optimization
problem in B or W at a time fixing the other.

In order to solve (1) inW , we fixB and solve the following
optimization problem on W :

W ← argmin
W

T∑
t=1

{(
1 + µ‖bot‖1

)
L
(
wt;Dt

)
+ λ
∥∥∥wt −∑

s6=t

Bst ws

∥∥∥2
2

}
(2)

which can be handled by the simple gradient descent
method in W . Alternatively, (2) can be solved by
the block-coordinate based methods: for each task t ∈
{1, . . . , T}, we fix {ws}s∈{1,...,T}\t along with B, and
iteratively compute the following optimization problem
only on wt: wt ← argminwt

(1 + µ‖bot‖1)L(wt;Dt) +

λ
∑T
s=1 ‖ws −

∑
u 6=sBus wu‖22 where the problem con-

Algorithm 1 AMTL using Alternating Optimization
Input: D1,D2, . . . ,DT

Initialize B = 0
while Predefined stopping criterion is satisfied do

Fixing B, solve (2) and update W , whose t-th column is wt

for all t ∈ {1, . . . , T} do
Fixing W and {biu}u∈{1,...,T}\t, solve (3) and update bit

end for
end while

sists of (re-weighed) the loss function and the sum of T
`2-based regularizers.

Contrast to the partial optimization problem in W ,
the problem in the edge weights B is decompos-
able with respect to the columns of B. Let bit :=
(B1t, B2t, . . . , BTt)

> ∈ RT be the t-th column of B for
incoming edges to task t. Then, the problem (1) can be
rewritten as follows for easier interpretation on B:

minimize
W,B≥0

T∑
t=1

{
µ‖Λ bit‖1 + L

(
wt;Dt

)
+ λ
∥∥wt −W bit

∥∥2
2

}
where Λ is a T × T diagonal matrix whose t-th di-
agonal entry is the loss for task t, L

(
wt;Dt

)
, so that∑T

t=1 ‖bot‖1L
(
wt;Dt

)
=
∑T
t=1 ‖Λ bit‖1 provided that the

loss function is always non-negative. Also note that the
equality

∑
s6=tBst ws = W bit holds since Btt is fixed

as 0. Then, for each task t ∈ {1, . . . , T}, we fix W and
{bis}s∈{1,...,T}\t, and solve

bit ← argmin
bit≥0

µ‖Λ bit‖1 + λ
∥∥wt −W bit

∥∥2
2

(3)

which is a weighed LASSO problem with non-negativity
constraints. This can be solved by standard optimization
techniques such as a proximal gradient descent, and in our
implementation we use the weighted lasso implementation
in Mairal et al. (2010). Detailed algorithm for our asym-
metric multi-task learning is described in Algorithm 1.

AMTL with Curriculum Learning of Multiple tasks
We also formulate the curriculum learning of multiple tasks
leveraging the paradigm in (1). In the curriculum learn-
ing, we find the best order of tasks to be learned when each
task is considered based on the knowledge of all previously
trained tasks. Thus, it can be more efficient than the alter-
nating AMTL algorithm1, as it requires to train each wt
and bot only once in the entire training process. Let S de-
notes the permutation space over T elements, and for some
π ∈ S, π(i) is the i-th element in permutation π. Then, our
goal is now to solve the following optimization problem:

minimize
π∈S,W,B≥0

T∑
i=1

{(
1 + µ‖boπ(i)‖1

)
L
(
wπ(i);Dπ(i)

)
+λ
∥∥∥wπ(i) − i−1∑

j=1

Bπ(j)π(i) wπ(j)

∥∥∥2
2

}
. (4)

To be clear, it is instructive to contrast this problem against
the objective in (1). In (1), every model parameter wt is
assumed to be succinctly reconstructed by all other model

1This might not be always true since the alternating AMTL
algorithm can use parallelism on the matrix computation to speed
up the learning process.
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parameters. In the curriculum learning setting (4), on the
other hand, we have some ordering π in learning processing
and each model parameter is supposed to be represented
only by the predecessors with respect to π.

Since the problem (4) is a computationally intractable com-
binatorial problem, we propose a greedy algorithm as a
heuristic of solving (4); at every iteration i, we select a
task π(i) to be learned based on the previous selections
π(1), . . . , π(i − 1) so far. One trivial strategy on select-
ing a task is to naively decompose the objective of (4)
with respect to task t and find the task for i-th iteration
from the set of unselected tasks with the minimum value of
(1 + µ‖bot‖1)L(wt;Dt) + λ‖wt −

∑i−1
j=1Bπ(j)t wπ(j)‖22,

given the selections up to π(i− 1).

It might not be advisable, however, to select a task simply
based on the previous selections mainly because it lacks
exploration for new types of tasks. Moreover, if some task
is already reconstructed well by the previous tasks, then it
is not necessary to learn that task at this time, since it could
still be learned well at later steps.

Considering this, we propose to select a task that is able to
improve the future learning process the most. Suppose that
we maintain the set T := {π(1), . . . , π(i− 1)} for trained
tasks and U = {1, . . . , T}\T for untrained tasks at each
task selection process. We then find a task t ∈ U to be
learned next as follows:

(t, bot )← argmin
t∈U,bot

{(
1 + µ‖bot‖1

)
L
(
wt;Dt

)
+ λ

∑
s∈U\t

∥∥∥ws − i−1∑
j=1

Bπ(j)s wπ(j) −Btswt
∥∥∥2
2

}
. (5)

Note that the second term above is the sum of all regular-
izations for untrained tasks after training task t. Since all
wt for t ∈ U are not trained yet, we initialize them with the
single-task learning to measure the similarities to all future
tasks, assuming that the predictors from single-task learn-
ing are good approximations.

Once we have selected the task to be learned at step i, we
solve the following problem to greedily minimize (4):

wt ← argmin
wt

{(
1 + µ‖bot‖1

)
L
(
wt;Dt

)
+ λ
∥∥∥wt − i−1∑

j=1

Bπ(j)t wπ(j)

∥∥∥2
2

}
(6)

where all edge weights Bπ(j)t from the previous tasks to
the current selection t were set in the selection process of
(5) at time j. The details of our AMTL with the setting of
curriculum learning is described in Algorithm 2.

Algorithm 2 AMTL with Curriculum Learning
Input: D1,D2, . . . ,DT

Initialize with STL: W ←WSTL, U ← {1, 2, . . . , T}, T = φ
for i = 1 to T do

Given W and π(1), . . . , π(i − 1), find task t ∈ U (and bot )
from (5)
π(i)← t
Given B and W\wt, set wt from (6)
U ← U\t
T ← T ∪ {t}

end for

Loss Functions While L(wt;Dt) in the previous sec-
tions is any generic loss , we specifically consider the two
popular instances in our experiments. Suppose that each
Dt consists of nt samples of {(xi, yi)}nt

i=1 where x ∈ Rd
is a feature vector in the uniform feature space across all
tasks and and y is the target response that we predict.

Then, for a classification task where the response space for
y is binary {0, 1}, we use the logistic regression model
where the loss function is defined as L(wt;xt, yt) :=
1
nt

∑nt

i=1

[
(1− yi)〈xi, wt〉+ log

(
1 + exp(−〈xi, wt〉)

)]
.

For a regression task where we predict real-valued response
y, we consider the squared loss function: L(wt;xt, yt) :=
1
nt
‖yt −Xtwt‖22 where Xt is nt × d design matrix on xt.

4. Experiments
We evaluate the two variants of our methods on multiple
datasets for classification and regression, against relevant
baselines.

Baselines. We now describe relevant baselines and the
two variants of our method.
1) STL: Single-task learning method, where each task is
learned independently from all the others.
2) MTFL: Multi-task feature learning by Argyriou et al.
(2008), which enforces to share features across all tasks.
This multitask learning method provides no means for
avoiding negative transfer.
3) GO-MTL and SC-MTL: Multi-task learning method
that allows grouping and overlap in Kumar & Daume III
(2012), which represents each task as a sparse combination
of latent parameter bases shared across all tasks. SC-MTL
(Maurer et al., 2012) shares the same principle under the
dictionary learning framework. These methods account for
negative transfer to some degree by allowing selective shar-
ing of information, but are still prone to negative transfer
since they do not consider the task loss.
4) Curriculum-simple: Our implementation of the cur-
riculum learning method in Pentina et al. (2015), which al-
lows the regularization to happen only between a task and
its direct predecessor, and selects the task without consid-
ering the similarity to future tasks.
5) SMTL: A symmetric MTL baseline that implements
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Figure 1. Experimental results on the synthetic dataset. (a) The parameters used to make synthetic data. (b) The model parameters
learned by AMTL. (c) Visualization of the regularization graph learned by AMTL. (d) Per-task performance improvement over the STL.
The rows denote outgoing edge weights and the columns denote incoming edge weights for each task. (e) Per-task improvement in the
selection order by AMTL-curriculum.

(1), with additional requirement that the weight matrix B
should be positive semidefinite.
6) AMTL-noLoss: AMTL that does not scale the loss
based on the outgoing edge weights. This model will thus
consider task relatedness, but not task loss.
7) AMTL: Our asymmetric multi-task learning method,
which learns the regularization graph and the task predictor
in alternative fashion.
8) AMTL-Curriculum: Our asymmetric multi-task learn-
ing method solved by curriculum learning.

For the regularization parameters λ and µ, we find them
through cross-validation on designated validation sets.

4.1. Synthetic dataset

We first experiment with a synthetic dataset to validate our
model. We generate a synthetic dataset for regression that
consists of two groups, where tasks form distinct groups
based on the task parameters (See Figure 1(a)). The first
group consists of task 1 through 6, and the second group
consists of task 7 through 12. In each group, there are 6
tasks whose true parameters are generated from Gaussian
distributions with the same mean but different variances.
Specifically, the noise level for the first three tasks (task 1-
3, 7-9) is set to be low (σ = 5) while that of remaining
tasks is set to be high (σ = 25) to make tasks in this group
more difficult. We generate total of 90 samples per task and
use {30,30,30} split for training/validation/test.

From this experiment, we want to show that our AMTL
learns transfer weights that consider task relatedness and
individual losses, and this helps improve prediction perfor-
mance, as well as prevent negative transfer. Figure 1(c)
shows the transfer weights learned by AMTL, where the
columns are weights for the outgoing edges and rows are
the weights for the incoming edges. We observe that the
relatively easy tasks with low noise (task 1-3 and 7-9) have
outgoing edges to tasks with high noise (task 4-6 and 10-
12), but not vice versa.

To see if such asymmetric learning of transfer weights ac-
tually results in the performance improvement, we also re-
port quantitative evaluation of prediction performance in
Table 1. Our methods outperform all baselines, includ-
ing our own baselines such as SMTL that employs simi-
lar formulations but learns symmetric weights, or AMTL-
noLoss that does not consider task loss. For further anal-
ysis, we examine AMTL’s per-task RMSE reduction over
STL, against that of GO-MTL (Figure 1(d)). The result
clearly shows that the performance improvement achieved
by AMTL mostly comes from the suppression of nega-
tive transfer. While GO-MTL outperforms AMTL on some
tasks (task 5, 6, 10, 11, 12), it also degenerates performance
by great degree on several tasks (task 1,2,3,8). On the other
hand, AMTL does not result in large accuracy degeneration
in any of the tasks.

For analysis on AMTL-curriculum, we show the task se-
lection order and improvement on each task in Figure 1(e).
We see that easier tasks in each group (task 1-3, 7-9) are
selected at the earlier stage and more difficult tasks (task
4-6, 10-12) are selected in the second half. We observe
that while there is no improvement for the earlier selected
tasks, there is no degeneration of performance from nega-
tive transfer either, and there are significant improvements
on later selected, more difficult tasks.

We then compare the runtime of the two AMTL variants on
the synthetic dataset. AMTL-curriculum runs significantly
faster than AMTL, taking only 7.71± 0.16 seconds to run
while AMTL takes 167.29 ± 7.41 seconds. Thus, when
efficiency is a major concern, AMTL-curriculum might be
a better option over AMTL.

4.2. Real dataset

Datasets. For performance evaluation, we use three
datasets for classification, and one dataset for regression.

1) MNIST Digits data: This dataset contains 60, 000 train-
ing images and 10, 000 test images from 10 handwritten
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Synthetic MNIST USPS School AWA
STL 20.87±0.36 14.76 ± 0.62 12.44 ± 0.62 10.34±0.13 58.33±1.10

MTFL (Argyriou et al., 2008) 19.34±0.37 14.12±0.55 12.29±0.67 9.92±0.04 65.00±0.42
GO-MTL (Kumar & Daume III, 2012) 19.18±0.39 14.44±1.34 11.92±1.48 9.87±0.09 62.46±0.25

SC-MTL (Maurer et al., 2012) 19.85±0.30 14.64±0.50 12.36±0.74 10.12±0.05 66.39±0.65
Curriculum-simple (Pentina et al., 2015) 20.87±0.36 14.56±0.45 12.28±0.15 10.30±0.13 57.37±1.66

SMTL 20.87±0.36 14.00±0.41 12.24±0.58 10.19±0.05 59.05±0.40
AMTL-noLoss 20.86±0.36 14.24±0.53 12.56±0.59 10.18±0.05 58.20±0.32

AMTL 18.80±0.22 12.92 ± 1.37 11.48 ± 1.21 10.13±0.08 56.83 ± 1.11
AMTL-Curriculum 20.33±0.29 13.68±1.42 11.84±1.46 10.16±0.05 56.99±1.09

Table 1. Task performance on multiple datasets. We report the root mean squared error for regression, and the mean classification error
(%) for classification, as well as the standard error for 95% confidence interval over 5 splits.
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Figure 2. Per-class performance improvement of GO-MTL and
AMTL, on the MNIST dataset.

digits (0-9). The raw image has 28 × 28 dimensions, and
we reduce the dimensionality to 64 using PCA. We use
5 random splits for training/validation/test datasets with
1000/500/500 instances, following the procedure of Kang
et al. (2011) and Kumar & Daume III (2012)
2) USPS Digits data: Another handwritten digit dataset,
that is composed of 7, 291 training images and 2, 007 test
images. The raw images are 16× 16 grayscale images, and
we reduce the dimensionality to 87 using PCA. We gener-
ate 5 random splits by selecting 1000 random samples from
the training set, and select two sets of 500 random images
from the test set, to be used as validation and test.
3) School dataset: This regression dataset consists of exam
scores of 15,362 students from 139 schools, where the
scores are real values. There are 28 features per each in-
stance, but we use 26 binary-valued features following the
procedure of Argyriou et al. (2008). We use the first 5 splits
among 10 splits provided by Argyriou et al. (2008).
4) AWA: This dataset (Lampert et al., 2009) contains
30, 475 images from 50 animal classes, such as chim-
panzee, giant panda, leopard, persian cat, hippopotamus.
For training/validation/test splits, we used 30/30/30 im-
ages. For features, we use the provided 4096-D DeCAF
features, and reduced their dimensionality to 500.

Table 1 shows the prediction performance of the baselines
and our methods on all four datasets. Both AMTL and
AMTL-Curriculum outperform the STL baseline, as well
as the baseline multi-task / curriculum learning methods,
except for the School dataset where GO-MTL performs
better. We attribute this to the fact that the different tasks in

the school dataset are essentially targeting the same prob-
lem on different data. Curriculum-simple obtains small
performance improvements on all datasets, which could
be due to the weaker regularizer that only uses the previ-
ously selected task for knowledge transfer. On all datasets,
AMTL performs slightly better than AMTL-Curriculum.
The reason for this could be that the AMTL-Curriculum
requires to have strict directional graph even between two
tasks with similar loss, based on the order they are selected.
However, AMTL-Curriculum still has advantages in terms
of efficiency. To show that our performance improvement
is coming from the reduction in the negative transfer, we
plot the per-task accuracy improvements over the STL of
GO-MTL, and AMTL on the MNIST dataset (Figure 2).
Our method, as expected, improves the prediction perfor-
mance on all tasks. GO-MTL, on the other hand, does well
on some, even outperforming ours (task 2, 4, 7) but at the
same time degenerates performance on several other tasks,
and thus results in lower overall performance compared to
ours. This per-class result agrees with the result on the syn-
thetic dataset, and suggests that our AMTL could be even
more useful for cases where losing performance on any of
the tasks is undesirable.

Our MTL variants with similar formulation but with sym-
metric weights (SMTL), or no weights on the loss (AMTL-
noLoss) do not work as well as the AMTL, or AMTL-
Curriculum, which suggests that allowing asymmetric
transfer and deciding the transfer direction on the task loss
is essential to the success of our model.

For qualitative analysis, we visualize the learned regular-
ization graph for AMTL and AMTL-Curriculum on the
MNIST dataset in Figure 3(a) and (b), varying the size of
the nodes based on the task loss (accuracy). We observe
that the edges come from the tasks with low loss and go
into the ones with higher loss. Further, the tasks that are
associated through the regularization graph are mostly in-
tuitively relevant ones. For example, in Figure 3(a), 5 and
9 are coupled and there is a strong edge from 9 to 7, and
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Figure 3. Regularization graph learned on the MNIST dataset.

in Figure 3(b), 0 and 6 are selected to regularize the learn-
ing of 9, which makes sense when considering their shapes.
Note that the regularization graph from AMTL-Curriculum
generates a non-cyclic directed graph while AMTL allows
such cyclic dependencies.

4.3. Experiment on datasets with large variance in
number of training instances

While most standard multi-task learning datasets have sim-
ilar number of training instances per task, this might not
hold in real-world scenarios where we might have largely
uneven number of instances per task. For example, in Ima-
geNet dataset (Deng et al., 2009) for object categorization
task, some object categories have more than 3000 images
per class, while some others have less than 10 instances.
This imbalance results from the discrepancy in their actual
occurrence frequencies in the real world. As mentioned in
Section 3, our model can incorporate the number of training
instances to prevent the models overfitted to small number
of instances from transferring to models with larger num-
ber of instances. As we discussed after introducing (1), we
can control the amount of transfers by a task weight ct, al-
lowing more outgoing transfers from tasks with more sam-
ples. We call this variant AMTL-imbalance. We perform
additional experiments on two datasets that exhibit such a
training size imbalance, to see how this variant can benefit
in practice.

1) Synthetic dataset: This is a synthetic dataset created as
in the description in Section 4.1, but with different number
of training instances per task. We use the same task param-
eters as the synthetic dataset in 4.1, except that the noise
level is set to 50 for all tasks. Here, we used 500 training
instances for task 1-3, and 7-9, and 5 instances for task 4-6
and 10-12. We use 50 instances for validation and test.

2) ImageNet-Room: This dataset is a subset of the Im-
ageNet dataset that contains 20 classes under the super-
class room. In this dataset, some classes have as many
as 1,000 instances (refectory, palace, salon), while some
classes have as few as 30 instances (washroom, concert
hall, tollbooth). For each class, we randomly selected 20
instances for test, and used remaining instances for train-
ing. For features, we extracted 4096-D Caffe features, and

Method Synthetic ImageNet-Room
STL 54.05±0.82 45.85±1.36

MTFL 55.44±0.94 47.95±1.20
GO-MTL 55.18±0.85 47.05±1.35
SC-MTL 54.37±0.98 47.60±1.26

Curriculum-simple 54.05±0.82 45.25±1.26
SMTL 54.09±0.85 46.00±1.16

AMTL-noLoss 53.93±0.76 48.20±1.33
AMTL 53.19 ±0.77 40.80±1.46

AMTL-imbalanced 53.09 ± 0.76 40.00±1.71

Table 2. Prediction error of different models on the Imbalanced
datasets. We report the average error over 5 random splits, as well
as the standard error at 95% confidence interval.

reduced their dimensionality to 500 using PCA, for faster
learning.

We report the results of this experiment in Table 2. On
both datasets, our AMTL models significantly outperforms
the STL, especially on the ImageNet-Room dataset, while
GO-MTL significantly degenerates performance. The de-
generate performance of GO-MTL might be due to the neg-
ative transfer caused by enforcing the high-confident mod-
els to share bases with low-confident models trained with
few training samples. Further, we see that the AMTL-
imbalanced works better than AMTL, which shows that
considering number of training instances also help with the
prevention of negative transfer.

5. Conclusion
In this work, we propose Asymmetric Multitask Learning
(AMTL) based on task relatedness and loss, which en-
ables to perform asymmetric transfer of information be-
tween tasks in multi-task learning. By allowing to select
the regularization parameters based on the source task loss,
AMTL can avoid negative transfer from less confident, and
difficult tasks to more confident ones. To select few useful
relations while preventing transfer between unrelated tasks,
we add in non-negativity and sparsity constraints to learn
a sparse non-negative regularization graph. We solve this
task relation graph learning problem using both an alterna-
tive learning algorithm and curriculm learning algorithm,
and validate their performances on multiple datasets, on
which we obtain significant improvements in the task per-
formance. We further show that our method minimizes the
negative transfer by comparing the per-task performance
with a symmetric multitask learning baseline, and that it
works even better when training data distribution across
tasks is largely imbalanced, with additional experiments.
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