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Abstract
We propose a method that learns a discriminative yet
semantic space for object categorization, where we also
embed auxiliary semantic entities such as supercate-
gories and attributes. Contrary to prior work which only
utilized them as side information, we explicitly embed
the semantic entities into the same space where we em-
bed categories, which enables us to represent a category
as their linear combination. By exploiting such a uni-
fied model for semantics, we enforce each category to
be represented by a supercategory + sparse combination
of attributes, with an additional exclusive regularization
to learn discriminative composition.

Semantic approaches have gained a lot of attention re-
cently for object categorization, as object categorization
problems became more focused on large-scale and fine-
grained recognition tasks and datasets. Attributes (Lam-
pert, Nickisch, and Harmeling 2009; Farhadi et al. 2009;
Hwang, Sha, and Grauman 2011; Akata et al. 2013) and
semantic taxonomies (Marszalek and Schmid 2008; Grif-
fin and Perona 2008; Weinberger and Chapelle 2009; Gao
and Koller 2011) are two of the popular semantic sources
which impose certain relations between the category mod-
els. While many techniques have been introduced to utilize
each of the individual semantic sources for object catego-
rization, no unified model has been proposed to relate them.

We propose a unified semantic model where we can learn
to place categories, super categories, and attributes as points
(or vectors) in a hypothetical common semantic space. Fur-
ther, we propose a discriminative learning framework based
on dictionary learning and large margin embedding, to learn
each of these semantic entities to be well separated and
pseudo-orthogonal, such that we can use them to improve
visual recognition tasks, e.g., category/attribute recognition.

However, having semantic entities embedded into a com-
mon space is not enough to utilize the vast number of rela-
tions that exist among them. Thus, we impose a graph-based
regularization between the semantic embeddings, such that
each semantic embedding is regularized by sparse combina-
tion of auxiliary semantic embeddings.

The observation we make to draw the relation between
the categories and attributes, is that a category can be rep-
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Figure 1: Concept: We regularize each category to be represented
by its supercategory + a sparse combination of attributes, where
the combinations are learned. The resulting embedding model im-
proves the generalization, and is also able to compactly represent
a novel category. For example, our model can describe a tiger as
a striped feline. Such decomposition can hold for categories at any
level. For example, supercategory feline can be described as a stalk-
ing carnivore.

resented as the sum of its super category + the category-
specific modifier, which in many cases can be represented
by a combination of attributes. Further, we want the repre-
sentation to be compact. Instead of describing a dalmatian
as a domestic animal with a lean body, four legs, a long tail,
and spots, it is more efficient to say it is a spotted dog (Fig-
ure 1). It is also more exact since the higher-level category
dog contains all general properties of different dog breeds,
including indescribable dog-specific properties, such as the
shape of the head, and its posture. This exemplifies how a
human would describe an object, to efficiently communicate
and understand the concept.

This additional requirement imposed on the discrimina-
tive learning model would guide the learning such that we
obtain not just the optimal model for class discrimination,
but to learn a semantically plausible model which has a po-
tential to be more robust and human-interpretable; we call
this model Unified Semantic Embedding (USE).

Learning a unified semantic embedding space
Suppose we have d-dimensional image descriptors and m-
dimensional label vectors, including category labels, at dif-
ferent semantic granularities, and attributes. Our goal is to
embed both images and labels into a single unified semantic
space. To formally state the problem, given a training set D



that has N labeled examples, i.e. D = {xi, yi}Ni=1, where
xi ∈ Rd denotes image descriptors and yi ∈ {1, . . . ,m}
are their labels associated with m unique concepts, we want
to embed each xi as zi, and each label yi as uyi

in the de-
dimensional space, such that the similarity between zi and
uyi

, S(zi,uyi
), is maximized. Assuming linear embedding

with matrixW , zi =Wxi.
To ensure that the projected instances have higher similar-

ity to its own category embedding than to others, we add dis-
criminate constraints, which are large-margin constraints on
distance: ‖Wxi−uyi‖22+1 ≤ ‖Wxi−uc‖22+ξic, yi 6= c.
This translates to the following discriminative loss:

LC(W ,U ,xi, yi) =
∑
c

[1 + ‖Wxi − uyi‖
2
2 − ‖Wxi − uc‖22]+

where U is the columwise concatenation label embedding
vectors, such that uj denotes jth column ofU . After replac-
ing the generative loss in the ridge regression formula with
the discriminative loss, we get the following discriminative
learning problem:

min
W ,U

N∑
i

LC(W ,U ,xi, yi) + λ‖W ‖2F + λ‖U‖2F ,

where λ regularizes W and U from going to infinity.
This is one of the most common objectives used for
learning discriminative category embeddings for multi-
class classification (Bengio, Weston, and Grangier 2010;
Weinberger and Chapelle 2009).

Supercategories. While our objective is to better catego-
rize entry level categories, categories in general can appear
in different semantic granularities. For example, a zebra
could be both an equus, and an odd-toed ungulate. To learn
the embeddings for the supercategories, we map each data
instance to be closer to its correct supercategory embedding
than to its siblings: ‖Wxi − us‖22 + 1 ≤ ‖Wxi − uc‖22 +
ξsc,∀s ∈ Pyi and c ∈ Ss where Pyi denotes the set of su-
perclasses at all levels for class s, and Ss is the set of its
siblings. The constraints can be translated into the following
loss:
LS(W ,U ,xi, yi) =

∑
s∈Pyi

∑
c∈Ss

[1+‖Wxi−us‖22−‖Wxi−uc‖22]+.

Attributes. Attributes can be considered as a normalized
basis vectors for the semantic space, whose combination
represents a category. Basically, we want to maximize the
correlation between the projected instance that possess the
attribute, and its correct attribute embedding, as follows:

LA(W ,U ,xi, yi) =
∑

a∈Ayi

[σ − (Wxi)
Tyai ua]+,

‖ua‖2 ≤ 1, yai ∈ {0, 1},
where Ac is the set of all attributes for class c, σ is the mar-
gin (we simply use a fixed value of σ = 1), yai is the la-
bel indicating presence/absence of each attribute a for the
ith training instance, and ua is the embedding vector for at-
tribute a.

Semantic regularization. The previous multi-task formu-
lation enables to implicitly associate the semantic entities,
with the shared data embedding W . However, we want to
further explicitly impose structural regularization on the se-
mantic embeddings U , based on the intuition that an object
class can be represented as its parent level class + a sparse
combination of attribute as follows:

R(U ,B) =

C∑
c

‖uc − up −UAβc‖22 + γ2‖βc + βo‖22.

c ∈ Cp, o ∈ Pc ∪ Sc, 0 � βc � γ1,∀c, p ∈ {1, . . . ,C+ S},

where UA is the aggregation of all attribute embeddings
{ua}, Cp is the set of children classes for class p, γ1 is the
sparsity parameter, and C is the number of categories. B is
the matrix whose jth column vector βj is the reconstruction
weight for class j, Sc is the set of all sibling classes for class
c, and γ2 is the parameters to enforce exclusivity. We require
β to be non-negative, since it makes more sense to describe
an object with attributes that it has, rather than attributes it
does not have.

The exclusive regularization term is used to prevent the
semantic reconstruction βc for class c from fitting to the
same attributes fitted by its parents and siblings. Such reg-
ularization will enforce the categories to be ‘semantically’
discriminated as well. With the sparsity regularization en-
forced by γ1, the simple sum of the two weights will prevent
the two (super)categories from having high weight for a sin-
gle attribute, which will let each category embedding to fit
to exclusive attributes.

Unified semantic embeddings with semantic regular-
ization. After augmenting the categorization objective in
Eq. with the superclass and attributes loss and the sparse-
coding based regularization presented in the previous para-
graph, we obtain the following multitask learning formula-
tion:

min
W ,U,B

N∑
i=1

LC(W ,U ,xi, yi)+

µ1 (LS(W ,U ,xi, yi) + LA(W ,U ,xi, yi)) + µ2R(U ,B)

‖wj‖22 ≤ λ, ‖uk‖22 ≤ λ, 0 � βc � γ1,
∀j ∈ {1, . . . , d}, ∀k ∈ {1, . . . ,m}, ∀c, p ∈ {1, . . . ,C+ S},

where S is the number of supercategories, wj is W ’s jth
column, and µ1 and µ2 are parameters to balance between
the main and auxiliary tasks, and discriminative and genera-
tive objective.

The above equation can also be used for knowledge trans-
fer when learning a model for a novel set of categories, by
replacing UA in R(U ,B) with US , learned on class set S
to transfer the knowledge from.

Numerical optimization. Eq. is not jointly convex, and
has both discriminative and generative terms. The problem
is similar to the problem in (Mairal et al. 2008), and can
be optimized using a similar alternating optimization, while
alternating between the following two convex sub-problems:
1) Optimization of the data embedding W and parameters
B, and 2) Optimization of the category embedding U .



Flat hit @ k (%) Hierarchical precision @ k (%)
Method 1 2 5 2 5

No
semantics

Ridge Regression 38.39 ± 1.48 48.61 ± 1.29 62.12 ± 1.20 38.51 ± 0.61 41.73 ± 0.54
LME 44.76 ± 1.77 58.08 ± 2.05 75.11 ± 1.48 44.84 ± 0.98 49.87 ± 0.39

Implicit
semantics

ALE (Akata et al. 2013) 36.40 ± 1.03 50.43 ± 1.92 70.25 ± 1.97 42.52 ± 1.17 52.46 ± 0.37
HLE (Akata et al. 2013) 33.56 ± 1.64 45.93 ± 2.56 64.66 ± 1.77 46.11 ± 2.65 56.79 ± 2.05

AHLE (Akata et al. 2013) 38.01 ± 1.69 52.07 ± 1.19 71.53 ± 1.41 44.43 ± 0.66 54.39 ± 0.55
Explicit
semantics

LME-MTL-S 45.03 ± 1.32 57.73 ± 1.75 74.43 ± 1.26 46.05 ± 0.89 51.08 ± 0.36
LME-MTL-A 45.55 ± 1.71 58.60 ± 1.76 74.67 ± 0.93 44.23 ± 0.95 48.52 ± 0.29

USE USE-No Reg. 45.93 ± 1.76 59.37 ± 1.32 74.97 ± 1.15 47.13 ± 0.62 51.04 ± 0.46
USE-Reg. 46.42 ± 1.33 59.54 ± 0.73 76.62 ± 1.45 47.39 ± 0.82 53.35 ± 0.30

Table 1: Multiclass classification performance on the AWA dataset (4096-D DeCAF features).

Results
We validate our method for multiclass categorization per-
formance and knowledge transfer on the Animals with At-
tributes dataset (Lampert, Nickisch, and Harmeling 2009),
which consists of 30, 475 images on 50 animal classes, with
85 class-level attributes 1. We use the Wordnet hierarchy
to generate supercategories. Since there is no fixed train-
ing/test split, we use {30,30,30} random split for train-
ing/validation/test. For the features, we use the provided
4096-D DeCAF features obtained from a deep convolutional
neural network.

We compare USE against multiple existing embedding-
based categorization approaches, that either do not use any
semantic information, or use semantic information but do
not explicitly embed semantic entities. For non-semantic
baselines, we use Ridge Regression, a linear regression with
`-2 norm, and LME, a base large-margin embedding (Eq. )
solved using alternating optimization. For implicit seman-
tic baselines, we consider ALE, HLE, and AHLE, which
are our implementation of Akata et al. (Akata et al. 2013).
The method inputs the semantic information by represent-
ing each class with structured labels that indicate the class’
association with superclasses and attributes. We implement
variants that use attributes (ALE), leaf level + superclass la-
bels (HLE), and both (AHLE) labels.

We implement multiple variants of our model to analyze
the impact of each semantic entity and the proposed regular-
ization. 1) LME-MTL-S: The multitask semantic embed-
ding model learned with supercategories. 2) LME-MTL-
A: The multitask embedding model learned with attributes.
3) USE-No Reg.: The unified semantic embedding model
learned using both attributes and supercategories, without
semantic regularization. 4) USE-Reg: USE with the sparse
coding regularization. We find the optimal parameters for
the USE model by cross-validation on the validation set.

Multiclass categorization. We first evaluate the USE
framework for categorization performance. We report the
average classification performance and standard error over 5
random training/test splits in Table 1, using both flat hit@k,

1Attributes are defined on color (black, orange), texture (stripes,
spots), parts (longneck, hooves), and other high-level behavioral
properties (slow, hibernate, domestic) of the animals.

which is the accuracy at the top-k prediction made, and hi-
erarchical precision@k from (Frome et al. 2013), which is a
precision the given label is correct at k, at all levels.

The implicit semantic baselines, ALE-variants, underper-
formed even the ridge regression baseline with regard to
the top-1 classification accuracy 2, while they improve upon
the top-2 and hierarchical precision. This shows that hard-
encoding structures in the label space do not necessarily im-
prove the discrimination performance, while it helps to learn
a more semantic space.

Explicit embedding of semantic entities using our method
improved both the top-1 accuracy and the hierarchical pre-
cision, with USE variants achieving the best performance in
both. USE-Reg. made substantial improvements on flat hit
and hierarchical precision @ 5, which shows the proposed
regularization’s effectiveness in learning a semantic space
that also discriminates well.

Qualitative analysis. Besides learning a space that is both
discriminative and generalizes well, our method’s main ad-
vantage is its ability to generate compact, semantic descrip-
tion of each category it has learned. This is a great caveat,
since in most models, including the state-of-the art deep con-
volutional networks, humans cannot understand what has
been learned; by generating human-understandable explana-
tion, our model can communicate with the human, allowing
understanding of rationale behind the categorization deci-
sion, and to possibly provide feedback for correction.

To show the effectiveness of using supercate-
gory+attributes in the description, we report the learned
reconstruction for our model, compared against the descrip-
tion generated by ground-truth attributes in Table 2. The
results show that our method generates compact description
of each category, focusing on its discriminative attributes.
For example, our method selects flippers for otter, and
stripes for skunk, instead of common nondescriminative
attributes such as tail. Further, our method selects attributes
for each supercategory, while there is no provided attribute
label for supercategories.

One-shot/Few-shot learning. Our method is expected to
be especially useful for few-shot learning, by generating a

2We did extensive parameter search for the ALE variants.



Category Ground-truth attributes Supercategory + learned attributes

Otter

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, . . .

A musteline mammal that is quadrapedal, flippers, furry,
ocean

Skunk

An animal that is smelly, black, stripes, white, tail, furry,
ground, quadrapedal, new world, walks, . . . A musteline mammal that has stripes

Deer

An animal that is brown, fast, horns, grazer, forest,
quadrapedal, vegetation, timid, hooves, walks, . . . A deer that has spots, nestspot, longneck, yellow, hooves

Moose

An animal that has horns, brown, big, quadrapedal, new
world, vegetation, grazer, hooves, strong, ground,. . . A deer that is arctic, stripes, black

Equine N/A An odd-toed ungulate, that is lean and active
Primate N/A An animal, that has hands and bipedal

Table 2: Semantic description generated using ground truth attributes labels and learned semantic decomposition of each categorys. For
ground truth labels, we show top-10 ranked by their human-ranked relevance. For our method, we rank the attributes by their learned weights.
Incorrect attributes are colored in red.
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Class Learned decomposition
Humpback
whale

A baleen whale, with plankton, flip-
pers, blue, skimmer, arctic

Leopard A big cat that is orange, claws, black
Hippo An even-toed ungulate, that is gray,

bulbous, water, smelly, hands
Chimpanzee A primate, that is mountains, strong,

stalker, black

Figure 2: Few-shot experiment result on the AWA dataset, and
generated semantic decompositions.

richer description than existing methods that estimates the
new input category using only trained categories, or at-
tributes. For this experiment, we divide the 50 categories
into predefined 40/10 training/test split, and compare the
knowledge transfer using AHLE. We assume that no at-
tribute labels are provided for test classes. For AHLE, and
USE, we regularize the learning of W with W S learned
on training class set S by adding λ2‖W −W S‖22, to LME
(Eq. ). For USE-Reg, we use the reconstructive regular-
izer to regularize the model to generate semantic decom-
position using US . While all methods made improvements
over the no-transfer baseline, USE-Reg achieves the largest
improvement, improving two-shot result on AWA-DeCafe
from 38.93% to 49.87%. Most learned reconstruction look
reasonable, and fit to discriminative traits that help to dis-
criminate between the test classes, which in this case are
colors (See Figure 2).
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